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Abstract. Some singular generalised functions of several variables are introduced and their properties described.
They are used to support some general theorems to the effect that (a) the singularities of a generalised function are
responsible for the behaviour of its Fourier transform at infinity and (b) the behaviour of a generalised function at
infinity determines the singularities of its Fourier transform.
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1. Introduction

When | was on the staff of the University of Manchester the Department of Applied Mathe-
matics held seminars in the afternoon of every Monday and Friday (and Saturday sometimes).
Attendance at these seminars by staff and post-graduate students was strongly iaglvised
compulsory. The intention was to make members of the department aware of the latest ad-
vances throughout applied mathematics (e-mail had yet to be invented) and many international
figures presented the lectures. It was a marvellous experience for an Assistant Lecturer except
on those terrifying days when one was the designated speaker.

As a result of these seminars we knew that rigorous theories éffitnection were being
developed by Schwartz, Mikusski, Silva and others. But none of these theories seemed suit-
able for the applied field (this was well before weak solutions became all the rage). Then one
day George Temple gave a seminar which explained his ideas for an appropriate starting point
for applied mathematicians. James Lighhill saw their importance immediately and set about
constructing a working tool. Shortly thereafter his botk Introduction to Fourier Analysis
and Generalised Functiori4] was published. | do not know how long it took James to write
the book but | suspect that it was only a few days. At that time the speed and depth of his
thinking appeared supersonic to those of us who proceeded at a subsonic pace. (He was a
redoubtable player in the games at the annual Christmas party once he had finished his stint at
the piano.) If you floated an idea before him on Friday and it took his fancy you could easily
find that he had worked up a fully developed theory by the following Monday. The short time
which elapsed between the Temple seminar and the appearance of the book precludes any
long preparation. Yet the contents of the book have proved so valuable that it is still in print
over 40 years later.

The book by James deals with generalised functions of a single variable and | decided to try
to extend his ideas to several variables. The result@easeralised Functiong] published in
1966. For both books the definitions of certain generalised functions had to be settled. Singular
generalised functions are of great importance in applications. They occur in the force-fields
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of point sources and in the propagation of wavefronts. They may arise also in the solution of
the differential form of boundary value problems. However, their definition is not free from
ambiguity and a symbol may have different meanings for different writers. When singular
generalised functions are involved in formulae it is always necessary to check the defintions
being employed.

The reason why different definitions occur can be explained as follows. Suppose that, in
one dimension, the generalised functi>o;n1L is to be defined. It is equal to/x for x > 0 and
0 for x < 0. Since any generalised function can be multipliediyywould be expected that

x.x;l = H(x) @)

where H(x) is the Heaviside step friction which is 1 far > 0 and O forx < 0. It is
permissible to take a derivative by the usual product rule and so

x;l + x.(x;l)’ = 3(x) )

It would be convenient ik * obeyed rules similar to those foyi so that(x!) = —x? and
X. x+2 = x+1 Unfortunately, that leads to an inconsistency*it) pecause the left-hand side
vanishes then.
A similar difficulty is present in three dimensions. The quantity + y? + z%~¥? and
its derivatives turn up in electricity and magnetism when dealing with point sources and

multipoles. If(x? + y? + z2)~Y/2 is written asr the analogue of] is

Application of the Laplaciarv? to this relation leads to

0 0 0
6r—>+4 (xa— + ya— + Z8_> rR 2 V3 = A8 (0)8(1)8(2).
x y Z

If now it is asked that the usual formula&r—2 = 6r=5, r2.r > = r—3 and

hold there is an inconsistency again.

It may be mentioned that in four dimensions, a similar problem arisggfcr— x2 — y2 —
z%)~2 but details will be omitted.

Thus, it appears that, for a single variable, there is no way of definjfig with m a
positive integer, so that both the standard rule for the derivatiy8)’ = —mx;"* and the
standard rule for multiplicatiow.x, ™~ = = x}" are retained. Moving to higher dimensions
does not resolve matters.

The method WhICh James devised to surmount this hurdle was to rngaFEi CB(x) for
any constant, as)cJr also; then () remains valid since.3(x) = 0. Furthermorex
(x} Yy + €18 (x) for any constantCy in the nghthlll theory. The presence of the arbltrary
constants render$*) consistent withe.x;? = x;*

| adopted the same device in my book. However, it became clear from the reaction of
readers that they found this a confusing procedure especially when handling more complicated
singular generalised functions. So, when | came to write a new version [3] of my book, |
decided to abandon the Lighthill pattern and choose between multiplication and the derivative.
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| opted to retain the usual rule for multiplication so that;” = x1 ™. The price was a more
complex rule for the derivative since it was no longer possible to ley8) = —mx;* .

Of course, it is perfectly possible to have a consistent theory which retains the rule for the
derivative at the expense of multiplication. The same notation may mean different things for
different authors. When a singular generalised function is encountered it is always essential to
check what definition the author is employing.

Not all singular generalised functions require special attention. Some, such"asire
in common currency and comply with the standard rules for both multiplication and the
derivative. On the other handly|™ does not. It will be seen subsequently that basically
one technique is deployed in defining generalised functions which can exhibit singularities.
Suppose that a generalised function depends on the pargnberoming singular for some
range of3. In essence, definitions are extended from valug@sndiere the generalised function
is conventional by analytic continuation in the compfeglane. If the analytic continuation
covers all values gf no special treatment is necessary. Only where the analytic continuation
fails have additional definitions to be supplied.

The importance of singular generalised functions and their Fourier transforms stems from
their occurrence in a variety of applications. Some applications have been alluded to already.
Others include the Hadamard finite part, Liouville fractional derivatives, splines and the theory
of wavelets to mention a few examples.

In the following pages, where | have attempted to extend the theory of James on the
singularities of Fourier transforms of a single variable to several variables, | have retained
multiplication in standard form. Apart from this deviation from his way of doing things, |
hope that my treatment is in line with what James would have done, though probably his
exposition would have been more elegant and illuminating.

Section 2 contains a brief reminder of the Temple-Lighthill theory of generalised function
together with a discussion of properties of the powérsf the radial distance. In Section 3
the generalised functiorf log” r is handled. The Fourier transforms if andr*? log™ r are
obtained in Section 4.

More complicated singularities can occur in generalised functions of several variables than
those of a single variable. They need not be confined to a single point. An example is given in
Section 5 where the generalised functions are singular on a boundary.

The preceding theory is adapted in Section 6 to the Bessel generalised fufidtion. Its
properties are studied and its Fourier transform derived.

Section 7 is devoted to an investigation of the relation between a generalised function and
its Fourier transform. On the one hand it is shown that, under fairly general conditions, the
singularities of a generalised function dictate the behaviour of its transform at infinity. On the
other hand the behaviour of the generalised function at infinity controls the singularities of its
transform. The theory is illustrated by means of examples from the earlier sections.

An appendix contains some material which is needed in Section 7. It has been separated
off to avoid an undue interruption of the argument in Section 7.

2. Singular generalised functions inR,,

A typical point of R, will be identified by the vectok or by the Cartesian componenis,
X2, ... ,X,. The radial distance will be denoted byso thatr = (x? + x2 + ...x%)%2,
The generalised partial derivatividx; will be abbreviated td;; it may be taken as the
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conventional partial derivative in appropriate circumstances. The Lapl&&iavil signify the
usual operator generaliséd.

VE=92+05+...+ 3%

An integral over the whole oR, will be written

/ g(x) dx.

The basis of the Temple-Lighthill theory of generalised functions is the notion of a good
function as Lighthill called it. A good functiof(x) is infinitely differentiable everywhere on
R, and

lim |r*ar852 ... 87 y(x)| = 0
r—0o0

for every radial direction, every integér> 0 and all integerp; > 0, p, >0, ..., p, > 0.
A generalised functiog (x) is defined by a sequenéeg,, (x)} of good functions such that

/ gO0Y00 B = lim_ / Y ()y(0)

oo

for every goody, provided that the limit exists. All sequences which give the same limit are
regarded as equivalent and define the same generalised function.

Since the derivative of a good function is good the sequébeg, (x)} defines the gener-
alised derivatived; g (x). The property

/ {0;gX)}y(x) dx = —/ g(X)3;y(x) dx
follows from
/ {0;vym )}y (x) dx = —/ Y (X)0;7(X) dX

It can be shown that any generalised function can be expressed in terms of generalised
derivatives via

g(x) = 971957 ... aP f(X),

where the conventiongf (x) is continuous orRr, and

/ (£ OO /A4 DY) dx < oo

for some finiteN. This offers an alternative route for defining a generalised function.
Multiplication is less straightforward because the product of two generalised functions

is undefined except in special circumstances. For the purpose of multiplication fairly good

functions are introduced. The functi@x) is fairly good when it is infinitely differentiable

on R, and, together with all its derivatives, is bounded at infinityrByfor some finiteN.

Sincep(X)y(X) is good the sequend@(X)y,,(X)} definesB(x)g(x) with the property

/ (BOOZ(0}y(x) d = / 20{BOY00} .
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In other words it is possible to multiply any generalised function by a fairly good function.
Note thatx; andr? are fairly good but is not. Hence the multiplication undertaken in the
introduction is justified.
Moreover

f 5, (Bg)ydx = — / Bgdydx = — / 210, (By) — ;B dx

o0

=/ (Bo;g + gd;B)ydx,

verifying the standard rule for the generalised derivative of a product of a fairly good function
and a generalised function. This confirms the validity of the derivatives calculated in the
introduction.

A sequencdg, (X)} of generalised functions possesses a generaliseddixitasi. — 0
if, and only if,

o o
lim / gu(X)y(x) dx = / g(X)y(x) dx
=0/ -0
for every goody(x). The generalised limit will be denoted by Limg g,.(X) in order to avoid
any confusion with the conventional limit lim,o g,,(X) (which may or may not exist when
the generalised limit does).

It is transparent that the generalised limit coincides with the conventional limit when the
conventional one exists. In addition, when the generalised limit exists it is an easy deduction
that

Lim d;g,(X) = 9,;8(X),
w—0

i.e. a derivative and the generalised limit can be interchanged. It is also a simple matter to
include a linear change of variable so that

Ling) gulaixy + b1, ..., ayx, +b,) = glarx1 + b, ... , ayx, + by)
>

withay, ... ,a, andby, ... , b, constants. Another result is
Lim B0, 00 = BOOg(X),

so that it is always permissible to interchange the generalised limit and multipliation by a
fairly good function.

Points in the Fourier transform space will be denoted by the vectwith components
ag, dp, . .. , o, The lettera will be used for the radial distance so that (af + o3 + ... +
a?)1/2. A Fourier transform will be indicated usually by a capital leteg.

(o) = / h e 1%y (x) dx.

]

SinceT () is good{I',, (o)} defines a generalised fimctiai(e), the Fourier transform of
g(x), and

G(a) = / h e 1% g (x) dx.

o0
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The Fourier inversion theorem then takes the form

1 > jor-X
2 /Ooé G(a) dot.

It follows at once that Lim_.q g,.(X) = g(x) implies

Lim G, (a) = G(a).
w—0

g(x) =

Evidently, the generalised limit is a much more powerful device than the conventional
limit. Not only can it exist when the conventional one does not but also it enjoys a much
greater flexibility. Its properties, as described above, will be used freely in the following pages
without special mention.

An infinite seriesy .~ g,,(x) is said to be generally convergent when Ljim, fo gn(X)
exists. Clearly, a corvergent series is generally convergent. Also, from the above properties of
the generalised limit, derivatives and Fourier transforms can be taken term-by-term provided
suitable precautions are observed (see Jones [3, Chapter 5]).

The conventional function® satisfies

Vb = BB +n —2)rP? 1)

for any complexp if the origin is excluded when the quantities become too singular. It is
certainly valid for)ie(B) > 2 — n since then both sides of (1) are conventional functiefss(
conventional ifte(B) > —n). It would be convenient if (1) were satisfied by the generalised
functionr?. Thenrf~2 could be obtained from? and so, by stepping up two at a timefina
conventional power would be reached eventually (this is the continuation process mentioned in
the introduction). Thus?~2 could be expressed via generalised derivatives of a conventional
function. However, the procedure of stepping up two at a time comes to a halt if either of the
factors on the right-hand side of (1) vanishes. This happens, for instance fwhén— n. It
follows thatr~" cannot be defined by (1). As a consequence?, r "4, ... are undefined
as well. Another possible source of failurefis= 0 but this arises only when = 2 (the
stepping up ceases whitds non-zero ifz > 3) and it is known already that 2 is undefined
by (1) whenn = 2. Therefore = 0 does not need to be considered further and (1) can be
used whe # —n — 2k (k=0,1,...).

It is not too surprising that (1) fails f@ = 2 — n since it can be shown that

A" /23 (X)
(3n —2)!
which is actually zero when = 2 on account of the factorial being infinite. This shows also,
on puttingp = w + 2 —nin (1), that
27"/2§(X)

Limwur"™" = ———.
u—>0u (%n - 1!

V2r2—n —

(@)

3)

Apply the operatov? to (3) k times. Since generalised limits and derivatives can be inter-
changed (1) gives

Lim "2 = (VA0

. 4
=0 Gn + k — 1)lk1221 ()

The properties (3) and (4) suggektalways signifies a non-negative integer)
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DEFINITION 2.1. The generalised functior? (8 # 2 — n — 2k) satisfies
VP =B +n—2)rf2
The generalised functiorr”~% is defined by

Fk — Lim {2k n"/z(vz)kg(x) .
=0 (Gn +k — k1%

Obviously, the generalised function$ and»~"~% agree with the conventional functions
rB andr—"=% respectively whenever > 0..

Since Limy_g,r* = rPo when 2—n > ReBg > —n, only conventional functions being
involved, it follows from (1) that Lig_5,7? = rPo so long ao # —n — 2k.

The conventional function® satisfies

8.,'1’B = ijrﬁ_z. (5)

Therefore itis valid for 4-n > Re(B) > 2—n. Apply the operatoR? and use the formula

V3(x;8) = x;V2g + 20,8 6)
to obtain

BB +n—H{3r*2— @B -2x;r Y =0

The factorp + n — 4 is non-zero ang cannot be zero unless = 3. Hence (5) holds
for 2 —n > Ne(B) > —n with the possible exception ¢f = —2 and n= 3. But then the
generalised limit applied to (5) removes the exception. Thereafter repetition of the procedure
reduces by 2 and so (5) holds subject o 2 — n — 2k.

In fact (5) is valid forp = 2 — n also. From Definition 2.1

x;r~" = Limx;r*™"
n—0

sincex;8(x) = 0. Invoking (5) on the right-hand side and taking the limit we have
3ir¥ " =2 —n)x;r "

which is the same as (5) suppliésence the only restriction on (5) g# —n — 2k.
Another result concerns the formula

r2rP = P2 (7)

for conventional functions. Take2n > Rep > —n, apply the operatov? and use

V2(r?g) = r’vig + 4Zx.,'8jg + 2ng. (8)

j=1
After taking account of (5) we obtain
BB +n+2)(r?rP 2 —rf)y=0.

Cancellation of the non-zero factors leads to (7) Bitleduced by 2. Repetition of the process
verifies (7) forf £ —n — 2k.



446 D. S. Jones

The conditiong # —n — 2k on (7) can be dropped almost immediately. Sing&x) = 0
D x;9;800 + nd(x) =0
j=1
and then application of (6) repeatedly supplies
D x0;(VAH8(X) = —(n + 2Kk) (VA (). 9)
j=1
Moreoverr25(x) = 0 and so (8) and (9) provide
0 = (V3 r28(x) = r2(V3*8(x) — 2k(n + 2k — 2)(V3)*13(x). (10)
From Definition 2.1 and (7)

rZ.r—nfzk = Lim rM*n*2k+2 . T["/zrz(vz)ks(x)
n—0 (3n + k — Dk12%- 1y,
—n—2k+2

=r

by virtue of (10) and Definition 2.1. Thus, (& valid for any complexg.

Consequently, it has been shown that multiplicationfoby 2 produces the same result
as when the restriction > 0 is imposed. As pointed out in the introduction this means that
the standard rule for the derivative may not hold forfalFormulae where modification is
necessary will be derived now.

Although (7) holds for any complgkboth (1) and (5) have to be altered wies —n—2k.
From Definition 2.1 and (5)

7"/29; (V) 3(x) .
(3n + k — Dk122%-1y,

8.,'1’_"_2]‘ = Ling) (w—n-— 2k)xjr“_"_2k_2 —
n—

The application of (6) ta:;3(x) = 0 gives
X (VAH*S(X) = —2kd; (V2 13(x). (11)
Insertion of this result and taking the limit furnishes

Tl:n/Z)Cj (Vz)k+18(X)

oy = ok R G+ Rl + D122 (12)
when benefit is drawn from (4).
It may be verified in a similar manner that (1) is modified to
V% = (n+ 2k)(2k + 2)r A2
(n 44k + 2) 02 (V2)H1§(x) (13)

(3n + k)!(k + 1)12%+1

Both (12) and (13) would coincide with their conventional counterparts were it not for the
presence of the terms involvirdgx).
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This section has concentrated on certain generalised functions with a singularity at the
origin. However, linear changes of variable are permissible and acceptable to the generalised
limit so that there is no difficulty in transferring the singularity to a point other than the origin
and introducing a dilation. This remark is relevant to later sections also where having the
singularity at the origin produces a convenient simplification of the analysis.

3. Logarithmic generalised functions

With the properties off available from the preceding section it is a relatively straightforward
matter to introduce logarithmic factors. Start with the case when—n — 2k.

DEFINITION 3.1. The generalised functiorf log™ (B # —n — 2k) with m a non-negative
integer is defined by

p

Blog™ r —
r’log r_aﬁmr.

An immediate consequence of this definition is that

am 8’"
v2b log" r = Vi— P =

2.8
opn = aBmV r

so that, from (1),

m

d
v log" r = BB +n— 2)rﬁ_2

apm
= BB +n—2rP%log" r + m(2B +n — 2)r*?log"*r
+m(@m — DrP=2log" 2 r (14)

provided tha # 2 —n — 2.
By virtue of (5)

9; (rB log™ r) = (ﬁrﬁ_2 log” r + mrP=? |Ogm_1 r)X; (15)
whenp # —n — 2k while (7) provides

r2rflog” r = rP*2log" 1. (16)

For the exceptional values pftake advantage of Definition 2.1 and introduce

DEFINITION 3.2. The generalised functiorr”—2* log™ r is defined by

o™ "2(V2)k3(x
r~"#log" r = Lim pron=k T m VR0 .
0 Gn + k — k1221

That (16) holds for ang follows at once from Definition 3.2, (16) and (10).
Again the standard effect of multiplying by has been retained at the expense of altering
the derivative for some values pf
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From Definition 3.2, (15) and (11)
0; r"*log"r) = —(n+ Zk)xjr_"_Zk_2 log" r + m)cjr_"_Zk_2 log"~tr
Ttn/ij(VZ)k-‘rlB(X)
(—m)!(3n + k)1 (k + 1)122+1°
Notice that (17) agrees with (15) fer > 1. Also
V2" *log" r) = (n+ 2k)(2k + 2)r "% 2log" r + m(m — L)r "% 2log" % r
—m(n + 4k + 2)r "% 21og" 1
N { m n+ 4k + 2} /2 (V2)k1§(x)
A-m!  (=m! ) Gn+h)!(k+ 112%+

17)

(18)
Formula (18) is the same as (14) wher> 2.

4. Fourier transforms

In this section are derived the Fourier transforms of the singular generalised functions consid-
ered in the preceding two sections. The simplest case will be dealt with first. The syrbol
denotes the Laplacian wspace.

THEOREM 4.1. The Fourier transform of% is (— 1) (27)" (V3)*$().

Proof. The Fourier transform of(x) is 1. By the inversion theorem the Fourier transform of

1is (2m)"3(a). Since the Fourier transform of g (x) is iéjG(oc), where the partial derivative

9, is with respect ta;, the theorem follows at once. |
The corresponding theorem foft is

THEOREM 4.2. If B # 2k andB # —n — 2k the Fourier transform of# is
(3B + 3n — 1!
w

Proof. Suppose, firstly, that @~ %ef > —n. Then Lim,_oe P = rP since this is a

conventional result. In addition, with > 0, e rP is absolutely integrable. Therefore its
Fourier transform can be evaluated in spherical polar coordinates and

o ; o ‘]ln—l(ar)
/ e—ur—lot»xrﬁ dx = (23_[)11/2/ e—ptrrﬁ+n—1 2 - dr
—o00 0 (ar)2zn~t
where J, (z) is the standard Bessel function. The integral on the right is available in Watson
[4, p. 385] and gives
B +n—112n"/? 1.1 1. 11 o?
(Gn — DI(n2+ OLZ)(BJrn)/ZF(Eﬁ e mgh g n2 4+ a2

with F the usual hypergeometric function. When— 0 a standard formula for the hyperge-
ometric function supplies

2f5+n T[n/Za—ﬁ—n )

)

(3n — 1)Int2
F3B+4in, —ip—-13 1in 1) = 2 .
2P T 2% TP T2 2 —B-DIGn+1ip- D!
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Also 0 > Re(—P — n) > —n so that(u? + a®)~®+"/2 is conventional and

Lim(uz + 0LZ)—(f5+n)/2 = g P,
w—0

Insertion of these limits and use of the formulr)! = z!(z — 3)!2% /%2 reproduces the
transform stated in the theorem. Hence the theorem is proved$aheég > —n.

The transform 0b; g(x) is ia; G (r). Accordingly, the transform o¥2r# or g(B+n—2)rf =2
is —a? times the previous result. Singe£ 0 andp = 2 — n would makef — 2 an excluded
value we see that the transform:éf2 is the same as that fef with p — 2 for p. Repetition
of this argument reveals that the theorem is true)fef < 0 apart from the excluded values.

By the Fourier inversion theorem and what has been proved already

1 1
(21)n / . (E(V t = _1)v1—)!2y+” /2Tl X gy — Y
T —00 _iy — !

for Rey < Oand y# —n — 2k. Puty + n = —f so thatiep > —n andp # 2k. Then the
theorem is confirmed for this range ff
The proof is complete. |
Observe that Theorem 4.1 can be recovered from Theorem 4.2 by all@wingk. This
is confirmed by making the substitutienn /(—3p — 1)! = (3p)!sinzpx and calling on (4).
Since Lim,_x? = r% this is actually a check on consistency.
The remaining exceptional values are covered by

THEOREM 4.3. The Fourier transform of % js
(—1)kTCn/20L2k
(3n + k — Dlk122-1

{3VGn+k — 1) + 30 (k) — log 30}
where(z) = z!"/z!, the prime indicating a derivative with respect to the argument.

Proof. By Definition 2.1 and Theorem 4.2 the Fourier transform of-% is

1 n

Lim (Gu—k- 1! M=k g/ 2tk (—Dfn e .

=0 | (=3 + 2n +k — 1! (31 + k — Dk12%-1y
The replacement

(G

n—k-1 =

(a1 ‘ (k — %u)!sin%w‘c
leads to

TN I -
_ 1 1 1
2t o (k= 3w!Gn — g +k =D

which gives the formula stated in the theorem. The proof is finished. [
With regard to logarithms we have
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THEOREM 4.4. If B # 2k andp # —n — 2k the Fourier transform of? log™ r is
(3B + 3n — D!
—ig 1) 2
5 !
wherep1(B) = V(3B + 3n — 1) + FU(—3B — 1) — log Sa and, form > 1,
O (B) = d1(B)dm-1(B) + ¢, _1(B).

Proof. The theorem is an immediate consequence of Definition 3.1 and Theorem 4.28
Whenp = —n — 2k the pertinent theorem is

THEOREM 4.5. The Fourier transform of 7"~% log” r is
(=D n"2a?1,,1(0)
(n +k — Dlk!(m + 1)2%-1
where
) = 3k — 30 + W Gn+k — 31— D+ 30 - 3¥(-30) - log 3
and form > 1

P 2P g ()

T () = T (W) T2 (W) + 15,1 ().
There is an alternative expression fQr(u) which separates out the powers of taghamely

" oml(—1)Ptm

_ m—p
(W) = ; ol — 1 fr (W10 e (19)
wherexo() = 1, Xm() = X (W) Xm-1(1) + X,,_1 (1) (m > 1) and
X)) = 3Vk — 3w + 30 Gn+k— 3w — 1) + 3¢ (n) — 3P (—3p) +log2 (20)

Sinceti(n) = x(n) — loga, Equation (19) is verified fom = 1. Then induction confirms
(19) for generam.
Proof. According to Definition 3.2 and Theorem 4.2 the Fourier transformr6f? log” r is

m 1 —2k n
Lim 2 (g —k = DI wegy _ (D :
n=0 ™ | (=3 + 3n +k — 1)! (3n +k — Dlk12%-1py,

Rewrite this expression as

2k m 1
-1 knn/Za_Lim -
( ) 22k—1 1—0 8um "

{f () — f(O)}

where
GWiI=gm2a
k=3I k-1 4!
Consequently, the Fourier transform is
a2 f(m+1) (0)
221 41

Since f™ () = f (W) 1. () the proof is finished. [ ]
The final exceptional value @fis dealt with in

f ()

(_1)knn/2
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THEOREM 4.6. The Fourier transform of% log™ r is

m—1
1 2k+n—1._n/2 mlpp(0) —1-
(Qn +k— l)‘k'(—l)kerZ ktn Tlfn/ E A ma n—2k |Ogm Py
p:

+ (=% (27)" p,, (0) (V2)*3(et)
wherepo() = 1, pp (W) = p(W) p—1(R) + 0,,_1 (1) (m > 1) andp(p) = —x(1).

Proof. Either use Ling_, 7f log” r = r%* log” r and Theorem 4.2 or take the Fourier inverse
of Theorem 4.5 and employ (19), though this involves more manipulation.
The proof is ended. u

5. Another type of singularity

The generalised functiond andr? log” r have no singularity other than at the origin. With
this attribute they resemble the singular generalised functions in one dimension. But gen-
eralised functions irR, can have singularities on hypersurfaces. Discussion of generalised
functions which have singularities on conical-like boundaries is contained in Jones [3, Chap-
ter 8]. Therefore the case of a singularity at a conical point has been dealt with fully, so here
some generalised functions which have a singularity on a smooth boundary are examined. To
illustrate this feature we will consider powers:3f — 1 which can have singularities on the
surface of the unit sphere. The singularities can be transferred to other places and other shapes
by means of linear mapping. Since it is easy to carry out the transference only detedls for
will be given.

The non-negative integer powers:3f— 1 are covered by the preceding sections via the
binomial theorem. Negative integer powers require a definition since they are non-integrable.
In the followingm denotes a positive integer.

DEFINITION 5.1. The generalised functiofr®> — 1)~ is defined by

(}"2—1)71 = %ijﬁj |Og|r2— 1| -1,

j=1

-1 "
=" = ——— Y %0, =" -2 =) (m > 2).
2(m — 1) ; T

The function logr2—1| is conventional and integrable. Alsgis fairly good so thatr?—1)~"
is a well-defined generalised function which agrees with the conventional version-fken
1.

The function(r? — 1) log |r? — 1| is conventional and? — 1 is fairly good. Therefore the
derivative may be calculated either by conventional or by generalised means. On equating the
two (r?> — 1).(r> — 1)~% = 1. The more general result

F2=1D.r2 =" =@? -1t (21)

then follows from the definition without difficulty through induction. The conventional rule
for multiplication has been preserved.
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For more general powers of — 1 the change in sign aspasses through 1 has to be
circumvented. The device is to separate considerationd ef 1 and 7 < 1. When%ie(p) >
—1 let

=1 =2 -DPHE? - 1)

where H (x) is the Heaviside step function which is 1 for> 0 and 0 forx < 0. In other
words(r2 — 1)° is zero forr? < 1.
Similarly

-0 = a-r»PHA -

is zero forr? > 1.
Knowing (r% — 1)55r as a conventional function fokef > —1 we go to lower values df
by generalised derivatives in a similar manner to thaifor

DEFINITION 5.2. Whenp # —m the generalised functiong? — 1)§ and (r2 — 1)5 are
given by

1 n
r? -1 = 6+D D x0;r2 = D — (2 - D
j=1

2 b _ o2 a1 1 o
-1 = ?-1F 2(B+1);xja,(r i it

If it be assumed that2 — 1).(r2 — D' = (+2 — 1)%*2 which is certainly true wheie(p)
is large enough,

D a2 =D = Y k0,02 — 1.7 - DY
Jj=1 j=1

n
= 222 = DY+ (P - 1)) x0,67 — DY
j=1

Replace the derivatives by means of Definition 5.2 to obtain
2B+ D2 — D =20 + D2 — 1.2 - 1.
Sincep # —1
r?=1.2 -1 = 2 -1 (22)

Induction then verifies (22) for afl = —m.
In like manner

2—1D.02 -1 = (2 -1 (23)

whenp # —m.
The missing values d¢f are covered by
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DEFINITION 5.3. The generalised functiong? — 1)7" and (r2 — 1)-" are defined by

_ym=1s(m—1) (.2 _
(>~ Dy" = Lim {(rz—l)i_ G il 1)}’
W—

(m —Dp

_ : e )

2 mo __ 2_qyw-m -~ v
Y e |

It is necessary to check that the generalised limits exist. It will be sufficient to indicate the
method form = 1. Now, from Definition 5.2,

_ 1 &
-t = szjaj(rz—l)i—(rz—l)i (24)
j=1

The conventional functior? — 1)y can be expanded in powersofso that
> —D% =HE*—D{1+plog|r® — 1]+ 0@d}.
Then the right-hand side of (24) becomes

—B(r -+ ij [H? - Dlog|r® — 1|} — H@? = D) + o(1)

294
asp — 0. Hence
~-1t= Zx, [HG?—Dlog|r® - 1|} - HG? - D). (25)
Similarly
-1 rt=HQ1- r)——ij {HL-r?log|r®—1|}. (26)

By combining (25) and (26) we have, sinegx) + H(—x) = 1,
_ _ 1 _
-t -? -1 t= > ;xjaj logr?—1] —1=(2-1* (27)

on quoting Definition 5.1.
Since, by (22),

. ) o ( 1)m—l(r2 _ 1)8(m—1) (’,.2 _ 1)
r?— 1. - 13 :bm{( — Ly - }

(m —D'p
and
r?— D8P — 1) = k3% V(% - (28)
it follows that (22) holds whef = —m. Similarly, (23) is valid also wheff = —m. Conse-

quently,the usual rule for multiplication by? — 1 has been adhered tFhe exceptional cases
for the derivative will be dealt with now.
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By applyingd; in Definition 5.3 and calling on Definition 5.2 we find, after use of (28),

1 n
3 24007 =D = —m {0F = D3 (f - 177
j=1

_1)m _1ym—1
+ ED 2 gy 4 EDT g2 g, (29)
m! (m—1)!

%ij'aj(rz _ l):m = —m {(1’2 _ 1):m _ (r2 _ 1):m—l}
j=1

1

1
——— 3 D2 — 1) — =" (% - 1). 30
T DT (30)

From (29) and (30)

% Xn:x,a,- {(r2 -D."+ e (2 — l):'"}

= ]_:;ln {2 =D+ e G2 — )" + (2 = D"t e b2 _ 7ty
If now

- "+em (P - =P -, (31)
which is true form = 1 by (27), Definition 5.1 gives

m(r2 _ 1)7m71 —m {(r2 _ l)lmfl + e—(m+1)ni(r2 _ 1):;4171} .

But, sincem # 0, this is the same as (31) with replaced byn + 1. Hence (31) is verified
for all m by induction.

The function(r?> — 1 + ie)?, with e > 0, is well-defined for all values of so long as the
phase of the complex numbet— 1+ i¢ is specified. It will be taken to lie in the range, ).
Also the phase of? — 1—ie will be restricted to(—, 0). With these conventions on the phase
we introduce

DEFINITION 5.4. The generalised functiong? — 1 + i0)? are defined by
(r’—1+i0)f = Limo(r2 —1+ie)P.
e—>+

Since

Z—lﬁ ijaj(rz —1+ie) — (P —1+ief = AFie)r?—1+ie)h?
j=1

it follows that

l n
= 'x0,° =140 — 2= 1+i0)f = (> — 1+ i0)P L. (32)
2‘3 JY

j=1

It is obvious that, whefie() > —1,
r?—1+i0)f = (2 —1)f + (2 — 1P (33)
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Apply the operatorZ';:l x;0; and invoke (32). Then Definition 5.2 reproduces (33) vfith
reduced by 1. Hence (33) holds for Alexcept possibly fop a negative integer. On account
of (22) and (23)

(r>—1).0° —1+i0f = 2 — 1 £ i0)*** (34)

and the standard rule for multiplication is applicable.
Now

1 n
szja, log(r? —1+is) — 1= (LFie)(r®? —1+ie)~?

j=1

so that

g—>+0

l n
(2 —1+i0)"t = Lim > Zx,.a,. log(r? —1+ig) — 1
j=1

= %ijaj {log|r® —1| £ niH1-r?} -1
j=1

= > =D 1Fnis? -1

from Definition 5.1. More generally

(_1)171—1].[

G2 14i0)™" = (2 — 1) 5 lsn=D 2 _ 1y, (35)
(m — 1)!

One consequence of (35) is that (&@ntinues to hold wheh = —m, as may be confirmed
via Definition 5.1 and (28). Another inference is thad)is valid wher = —m.
Another property is of interest. From (33)

Ling)(rz —14+i0* " = Lirr(1) {(r2 — 1)i_'" + gE—mmi r? — 1)g—m} ‘
n— n—

On substitution from Definition 5.3 the right-hand side becomes

(-1 x

2 —m mti .2 —m I m— 2
=D+t - D" F E—y 3V (r? — 1.

The use of (31) and (35) leads to

Lirrg)(rz —1+i0" ™ = (> —14i0)". (36)

W—

Logarithmic factors can be introduced in a similar manner to that of Section 3 except for
(r> — 1)~ which has a different kind of definition. For such powers the appropriate approach

is

_ 1 "
(r2 —1 1|ng |r2 . 1| _ m ;xja, |ng+1 |r2 . 1| —log” |r2 _ 1| .
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Lower powers of-? — 1 can be deduced from

% > xj0;(r? = D" log” |2 — 1] =
j=1
L =m) {¢? = D*"log” [r? = 1| + (2 — D)™ log” [r? — 1]}
+p {2 =D logh 12 — 1] + (r2 — D" log” 2 — 1]} .
The more explicit
r> =D ™log” [r? — 1] =

p |

! 2 1— —q 1.2 2 1- 2

— EO—(p_q)!z’(’m_l)M x;0;(r*— 1" log’ |r — 1| — (r* =1+ "log” |r — 1|
q= j:]_

form > 1 may be preferred. Standard multiplication still applies
r> = 1).(r> = 1) log” |r2 — l| =% =1 " log” |r2 — l| .
The analogous formulae for? — 1)% log? [r? — 1| are
l n
> > xj0,0 = D log? |2 — 1] =
j=1
®+1) {(r2 — DY og? [r2 — 1] + (2 — D log” |2 — 1|}
2_15+1| =112 _1 2_1f5| r=1,2 _ 1
+p {02 = DM logr ™ |r2 — 1] + (2 — D log”*[r? — 1]
and
1 n
5 ijaj(rz — 1Pt log” ‘rz — l‘ =
j=1
B+ {02 =1 log? |2~ 1] - ¢ — 1 log” [ - 1]
+ {02 = 5 logr 2 — 1] - (2 - 1 log' |2 — 1}
provided thap + 1 is not a negative integer. The same formulae hold wher is a negative
integer so long ap is positive. Also valid are
> = 1).0° = D log? [r2 — 1| = (-2 — 1)} log? |12 — 1
for anyp and
r? = D" log’ |2 — 1| + €™ (> — D" log” |[r? — 1| = * — )" log” |r? — 1|.

Consideration of the Founer transforms of the generalised functions introduced in this
section is deferred to the next section.

6. Bessel functions

Bessel functions occur in many places in applied mathematics so that it is of interest to con-
sider their properties as generalised functions. In view of the great variety of Bessel funtions a
full discussion would be prohibitively long. So our investigation will be limited to one variant
but that should be sufficient to indicate how others can be handled.
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DEFINITION 6.1. The generalised functiort J,(r) is defined by

o (_l)mr2v+2m

r J\)(r) == 2_(:) m'(\) + m)'2v+2m .

Whenie(v) > —n/2 the definition makes the generalised function the same as the conven-
tional functionr®J,(r). For other values of removal of a finite number of terms leaves a
conventional convergent series and so the whole series is generally convergent! ks
is a well-defined generalised function. The fact that the series is generally convergent means
that derivatives and Fourier transforms can be taken term-by-term when desired.

It follows from Definition 2.1 that, ifv 21— n/2 — k,

(V24+Dr°Jy(r) = (2v+n — 2r" I, _1(r). (37)
On the other hand, (2) gives
(V2 + Dr 201 0(r) = 2202885 (x) sindn, (38)

whereas (13) supplies
(V24 Dr27 )i (r) =

=2k + Lyr=/27*k1 g a1 (r)

(39)
k+1 2yk—m+1
. (n+ 4k — 4m + 2)(V?) d(x)
-1 k+12n/2—k—1 11/2—1S|n1
+ 1) T 2”“; mlk+ 1 —m)\(n/2+ k —m)
Likewise, we obtain via (5)
ija,-rm(r) =r2r N1 (r) (40)
j=1
if v£—n/2—k.Forv= —n/2— k we have, from (12) and (10),
Z X3 R i () = R R s ()
j=1
k 2\k—m
_ankon/2—k+1_n/2-1 qin 1 (V) "3(x)
+ (=12 T sznnmg%im!(k—m)! . (42)
By combining (37) and (40) we have, for£ —n/2 — k,
rP(V2+ D' Jy(r) + (2—n — 2v) ijajr"Jv(r) =0, (42)

j=1

which is the same as the conventional result. Also (39), (41) and (10) provide

n
PA(VZ 4 Dr PR T () + 20+ D) D x 00T i (1)
j=1
k

17 —. n — 1 n + 2k B 4m —m
— (—1)kHip/2kHLl /2 1s|n%nrc2;m(v2)k 3(x). (43)
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These relations reveal thatJ,(r) is capable of constructing fundamental solutions of
certain differential equations wheris odd.
Another formmula which can be useful is

n
ija,-rm(r) —2vr¥ Jy(r) = —r‘)+lJ\)+1(r) (44)
j=1
whenv # —n/2 — k.
In contrast tor’J, the functionr~J, is the same whether regarded as generalised or
conventional. It has the representation as a series

N — (=L
r J\)(r):X;)m!(\)+m)!2\)+2m. (45)

The Bessel function’Y,(r) can be defined now by

r'Y,(r) = {r’J,(r) cosv — r'J_,(r)}/ sinvm (46)
whenv is not an integer. It follows that
(VZ+DroYo(r) = (2v+n—2r 1Y, _1(r), (47)
ij 0;r'Y,(r) = 2V, 1 (r), (48)
j=1
ijajr"Y\,(r) —2vY(r) = ="t 0. (49)

j=1

Whenv is an integer the limit of (46) is used as a definition. There is no problein when
is a positive integer and (47-49) continue to hold. Further consideration is necessary when
is a negative integer because it may coincide with one of the exceptional values. The relevant
definition is

_ (—DF & (=17”
A0 = =T g (27 10ar — L)+ b b+ 210g 2]
(- e~ k—p—D)! ,
R Z pl2er P, (50)
p=0
As a result

(V24 Dr27hy_p i (r) = =20k + r =271y o g a(r)

k+1 2\k—m+1

o + 4k — dm + (VO ) (5)
_Qykon/2—k=1n/2-1 os (n .

+ (-1 B z”“"; mlk +1—m)(n/2+k —m)

Furthermore

n
3 x;0;r2RY o (r) = P2 T2REY o i a ()
j=1

k (52)

VZ kfms
(= 1ykr/2kign/2-1 cosinm Z (V9 (x)
m=0

m!(k —m)! "~
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ThusrVY, can serve as a basis for a fundamental solution whénis not available.
The corresponding Hankel functions are defined in the customary way, namely

rPHP (1) = rU 1) +irY (),
rPHP () = () —ir'Y(r).

They can replace"Y, (r) in (47-49).
One result concerning Fourier transforms is

THEOREM 6.1. Wheng is not an integer the Fourier transform ¢f2 — 1 +i0)f is
2n/2+ﬁnn/2+1

(=B —-D1!

For the transform ofr? — 1 — i0)® change the sign dfthroughout.

2-1/2)7wi ,—B—n/2 2
gB+n/2=1/2)xi  —B—n/ Hfﬁ)fn/Z(a)‘

Proof. Assume firstly that @ fe(p) > —1. Then(r?>—1+i0)P/2 is a conventional function
and so isK_p{jL(r2 — 1+i0)¥2} wherek, is the usual modified Bessel function. Wjth> 0,
the function(r? — 1 + i0)P/2K _a{j.(r?> — 1 4 i0)Y/} is absolutely integrable and its Fourier
transform is

(zn)n/z

/21 / (r? = L+I0)"2K {1 (r® = 1+i0)Y*)r"/2J, o 1 (ar)dr

2
— /2L yn/2=1glBn 212w B 2 L 2) (ﬁ+n/2)/2H() n/z{(H2+OL2)1/2}

by virtue of a formula given by Watson [4, p. 416]. The transform in the theorem follows now
provided that, for O< fe(v) < 1,

Lim (1) Ky () = (v = D12 (53)
w—

because only conventional multiplication occurs.
To verify (53) start with

(12 + 1vt1/2
which is valid forfie(v) > —1/2 andx > 0. Also, if ie(v) > 0,

/00 dr (v — 1)Int/?
0

2 [ cosxt
XK () =0 = !5 / dr (54)
0

(12 4+ Y2 (v —1/2)12
after the change of variable= {u/(1 — u)}*?. Hence

'2” * cosxt —1
5).751/2 0 (t2+1)v+1/2 d

xKy(x) — (v=112"t = (v —

Since| cosxt — 1| < xt it follows that
x"Ky(x) — (v =112 = 0(1) (55)

asx — Owhen %(v) > 1/2. Itis evident from (54) that* K, (x) is bounded whefie(v) > 0.
MoreoverK_,(x) = K,(x). Hence, when G< fRe(v) < 1/2,

2ux"Ky(x) = XK1 (x) — Kyo1(0)) = 2K (0) — Kioy ()
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shows that (55) still holds on applying (55) to the term involvikg,; and invoking the
boundedness of'"K,_,. Thus, in fact, (55) is valid fofte(v) > 0 and (53) follows in a
trivial fashion.

Accordingly, the theorem has been established foer Be(8) > —1. By (34) the Fourier
transform of(r2 — 1 + i0)#*1 is —V2 — 1 of the Fourier transform ofr2 — 1 + i0)*. On
account of (47) this turns out to be the same formula Witteplaced by + 1. Thus the
transform is valid fofie(B) > —1, integers excepted. By virtue of (32) the Fourier transform
of (r> — 14 i0)P~1 is obtained from that ofr?> — 1 + i0)? by applying the operator

1| -
_2_5 Zocja,'—i-n-i-Zﬁ
j=1

Then (49) recovers the original with replaced by — 1. Hence the theorem has been
demonstrated fofr> — 1+ i0)? so long a$ is not an integer.
For (r2 — 1 — i0)? it is necessary only to change the sign of i in the exponential and put
HWY for H@, Thereafter the analysis follows the same route and the proof is concludiéd.
Fourier transforms of the Hankel funcfions can be deduced by Fourier inversion and from
these the transforms of Bessel functions derived. They are given in

THEOREM 6.2. Whenv + /2 is not an integer the Fourier transform ofJ,(r) is
(v+ %n . 1)!i2n+vflnn/27l {e\mi (az 1+ io)f\)fn/Z _ g (az _1— io)f\)fn/Z}
and ofr'Y,(r) is
(v+ %n . l)!(_1)2n+\)flj_[n/27l {e\mi(OLZ —14i0) 2 4 ef\mi(OLZ _1_ io)f\)fn/Z} .
THEOREM 6.3. With m a positive integer the Fourier transform;df”/zjm_n/z(r) is
(—pm2mt 22 — Dl — D" sindnn + (- ™ P (a? — 1) cosinm}
and Ofr'"_”/zYm,n/z(r) is

(=pmtmtn g2 n — Die® — 17" cosinm + (-1 TP (a? — D singnn} .

Proof. Since
Lim P2 w2 () = 1 ()
the formulae can be derived at once from Theorem 6.2, (36) and (35). |

The remaining exceptional orders are dealt with by

THEOREM 6.4. The Fourier transform of /27K J_, »_;(r) is

n/
o2k - (@ — D* [{w(k) + 2log 2— log |(o® — 1)|} sindnm + nH (1 — o) cosinn]

_ 1)m OLZk—Zm

k
n/2—k _n/2—k in 1 ( — —
+2 T S'nz’m”; ik — )] Yk+n/2—m-—1)
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and ofr—"/2-k Y,n/sz(l") is
/2-1 /2t k 2 1 2\ i 1
—2 T(a — D*[{wk) +2log 2— log |(«® — 1)|} cosnm — nH (1 — o®) sininn]

—2V/27k /2=t cosinm Xk: 7(_1)”10(2]{_2'" Yk+n/2—m—1)
2 m!(k — m)! '

m=0

Proof. Because
rR () = tm N PN G)

~ k 2n/27k7unn/Z(VZ)kme(X)(_l)m (56)
n; m(w—n/2—k+m)n/2+k—m— 2Dk —m)lp

the transform of the left-hand side can be obtained by taking the limit of the transform on the
right. The transform of the Bessel function on the rigid is available from Theorem 6.2 and the
limit leads to the stated result.

For the other Bessel function the formula analogous to (56) is

rERY L i(r) = ';T% AL (S

57
n/2+k —m—p—DI(VHE3(x) S

n/24+k—m—Dm!k —m)!n

k
+(_l)k2n/2—k—u].[n/2—l CO&I.L _ %n)nz
m=0

Again Theorem 6.2 supplies the transorm of the right-hand side and the theorem is [loved.
Several other transforms can be inferred from the foregoing. For convenience they are
listed in Appendix B without details of their derivation.

7. Continuity and asymptotic behaviour

In this section is studied the relation between the singular behaviour of a generalised function
and the properties of its Fourier transform. The subject was investigated for generalised func-
tions of a single variable by Lighhill [1] for the direct transform and by Lighthill [5] for the
inverse transform. Here his ideas are extended to generalised functions of several variables.

THEOREM 7.1. Letg(x) andg,, (X) be locally (absolutely) integrable ang, (x) be such that
g(X) — g, (X) is absolutely integrable far > R. Then, ifG,,(et) — 0asa — oo, G(ar) — 0
asa — 0.

Proof. The hypotheses ensure thak) — g,,(X) is absolutely integrable. Therefore its trans-
form G(a) — G,, (o) — 0 asa — oo by the Riemann-Lebesgue lemma. Sitigg(er) — 0
asa — oo the theorem follows. |

The theorem is useful becaugg(x) can be chosen to bé or P log™ r with fe(®) >
—n. They satisfy the conditions of the theorem on account of Theorem 4.1, Theorem 4.2,
Theorem 4.4 and Theorem 4.6. This is still truefifis replaced by '&*#, with a a real
constant vector, since the transform is merely translated by a finite amount. Evig€rily,
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is not obliged to be absolutely integrable in> R for its Fourier transform to vanish at
infinity. However, behaviour like ™ andr—" log™ r asr — oo for g(x) is excluded from the
theorem because these generalised functions are not locally integrable and their transforms do
not vanish at infinity (see Theorem 4.3 and Theorem 4.5). Nevertheless, they can be included
by the next theorem.

THEOREM 7.2. Let the only singularities ofo(X) be inr < R/2andd;go(X) be absolutely
integrable inr > Rfor j = 1,...,n. Thengg(X)€2*H (r — R) can be included irg,, (x) in
Theorem 7.1.

Proof. Let n(x) be an infinitely differentiable function which is unity fer> R and zero for

r < R/2. Then the functiorgo(X)n(X) — go(X)H (r — R) vanishes for > R andr < R/2.

It is finite elsewhere and so is absolutely integrable. Hence its Fourier transform tends to zero
as aau — oo. Therefore the desired result follows if the Fournier transform'®feg(x)n(x)

tends to zero. Now

3; {€*go0m ()} — ia;€3*go(x)n(X) = {N(X)d;g0(X) + go(X)d;n(X)} 2.

The given conditions ensure that the right-hand side is absolutely integrable so that its Fourier
transform tends to zero assa— oo. Hence the left-hand side enjoys the same property.
Accordingly, i@; — a;) times the Fourier transform off& go(X)n(X) tends to zero. Whatever
the direction of the radius vector éaat least one of; | tends to inifinity ast — oo. Therefore
the Fourier transform of & go(x)n(X) tends to zero as — oo and the proof is completcl

There is an alternative version of Theorem 7.2 which is more symmetrical but is somewhat
more restrictive in its conditions. One advantage is that it allows for a different exponential
multiplier. It may be proved in the same way as Theorem 7.2 and is contained in

THEOREM 7.3. Let the only singularities ofo(x) be inr < R/2and (V2 + a?){€ go(X)}
(areal) be absolutely integrable in> R. Then€“ go(X)H (r — R) can be included irg,, (X)
in Theorem 7.1.

The generalised functiond and rf log™ » with %te(B) > —n are not the only possible
candidates fog,, in Theorem 7.1. The generalised functiont J,,(r) is locally integrable and,
by the preceding section, its Fourier transform is identically zer@ in 1 when%ie(v) >
—n/2 Thereforey—>J,(r) is acceptable fog,, whenRe(v) > —n/2. Two other candidates
whenfe(v) > —n/2 arer’J,(r) andr’Y,(r). They are locally integrable and their Fourier
transforms tend to zero as— oo on account of Theorem 6.2 and Theorem 6.3. However,
they are unacceptable whéte(v) < —n/2 because their Fourier transforms do not tend
to zero asu — oo and, in addition, they are not locally integrable. Nor does the device
of Theorem 7.2 help. Although it resolves the problem of local integrability, the oscillatory
behaviour of/, andY, at infinity precludes satisfaction of the condition®go. Thusr®J,(r)
andr'Y,(r) are available for Theorem 7.1 only whet(v) > —n/2.

Note that because of the asymptotic behaviouf,@fndY, the generalised functions which
behave like &P (a real) at infinity are acceptable candidates provided that they comply with
the other conditions imposed. Direct confirmation is forthcoming (for a fuller discussion see
Appendix A). In the integral at the beginning of the proof of Theorem 4.2 replane +ia.

After the limit asp. — O is taken it is clear that the Fourier transfortff € tends to zero
asa — oo whenfe(B) > —n. That behaviour like '®r~" at infinity can be permitted is a
consequence of Theorem 7.3.



Singularities of Fourier transforms463

This direct confirmation means that it is possible to deduce something about the Fourier
transform ofr—>J,(r) without knowledge of the earlier theorems. The asymptotic develop-
ment of J, gives

1
(23.[)1/2,,\)+1/2

rJy(r) =

- - 1
(r—vm/2—7/4) —i(r—vm/2—7/4)
{é +e }+O(r"+3/2)

asr — oo, Consequently " J,(r) is absolutely integrable foke(v) > n—1/2 and its Fourier
transform tends to zero as— oco. On the other hand the order term is absolutely integrable
for Me(v) > n — 3/2 and the first term above is of the type just considered. It is evident then
that Theorem 7.1 makes the transformrof J,(r) tend to zero fofie(v) > n — 3/2. The
range ofv for which this is true can be extended by taking further terms in the asymptotic
expansion of/,.

In order to deal with singularities at points other than the origin the following definition is
introduced.

DEFINITION 7.1. A generalised function is said to have a finite number of isolated sin-
gularities x4, Xo, ... , Xy if it is equal to an infinitely differentiable function except at these
points.

Conventional functions with isolated singularities are not uncommon. The relation between
the behaviour of the Fourier transform and the singularities is a matter of some interest.
Of course it makes sense to treat them as generalised functions since their conventional
transforms may not exist.

DEFINITION 7.2. A generalised functiog(x) such thatg (x) —g,, (X) is absolutely integrable
overr > R is said to be well-behaved at infinitydf,, (o) — 0 asa — oo.

We can state now

THEOREM 7.4. Letg(x) possess a finite number of isolated singularitiegjat . . , X,,. For
m=1...,M leth,(X) be infinitely differentiable except for a singularity ®}. Suppose
that 8]’."{g(x) — h,,(X)} is absolutely integrable over some sphere which enclegder m =

1,...,M.Then,ifd) g(x) and 3} h,,(x) are well-behaved at infinity,

M
G(@) =) Hu(@) + o0 (ja;|™")

m=1
aso; — oo.
Proof. Since g(x) has only a finite nunber of singularitie&j"g(x) is absolutely integrable
over any finite domain which excludes the singularities. /&Ij"éhm(x) is absolutely integrable
over any finite domain which exclud&s. On the other hancaj’."{g(x) — h,,(X)} is absolutely
integrable over some domain containixg. Henceaj’.V {g(X) — h,,(X)} is absolutely integable
over any finite domain which excludes, ..., Xu_1, Xpi1, - -+ > Xp1- Thereforeaf’{g(x) -
M h.(x)} is locally integrable. It is well-behaved at infinity by hypothesis. Consequently,

m=1

Theorem 7.1 ensures that its Fourier transform tends to zercasxo i.e.

M
(ia))" {G(oc) -y Hm(oc)} =o(D).

m=1
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The theorem follows by choosing the directioneofo be thew ;-axis. |

In essence the theorem states that the singularitieg>0fdetermine the asymptotic be-
haviour of its Fourier transform. Naturally, it may not be possible to have the 3afeall
j. The magnitude of the error may vary as the point of observation moves abausthece.
Uniform behaviour can be obtained by requiring a little morg @ . An obvious modification
of the proof of Theorem 7.4 gives

THEOREM 7.5. If the conditions of Theorem 7.4 are satisfied except a]ﬁ’ais replaced by
(V3N then

M
G(a) = Z Hy () + o0 (a72Y).

m=1

The functionr’ J, (r) with Re(v) > —n/2 has as single singularity at the originikf(x) =
r?°/v12 the conditions of Theorem 7.4 are met for apyrovided thatN is any positive
integer such thalv < 2v + 2 + n. Therefore, by Theorem 4.2, the Fourier transform of
r’Jy(r)is

W +n/2—DI=D2""7"* g2 sinvr + 0 (a)

asa — oo. This is consistent with Theorem 6.2. If extra terms in the expansiofi b{r)
near the origin were included im (x) the value ofN could be increased and further terms in
the asymptotic development of Theorem 6.2 in powers Gfobtained.

Of course, the singularity could be moved from the origin by considexngx, |’ J,(|x —
x1]) say. The only effect is to multiplyf, () by € '**1 without altering the error estimate.

As explained already, the singularities gfx) dictate the behaviour of the Fourier trans-
form. A Fourier inversion suggests that the behavioug @ at infinity is responsible for the
singularities of its transform. Whether or not this suggestion can be justified is the next topic
to be discussed.

THEOREM 7.6. If the generalised functiop(x) is absolutely integrable the@ («) is locally
contimous in the sense that, given- 0, there is are > 0 such that| G(a + B) — G(a)| < §
for |B] < e.

Proof.
G(a) — G(a+pB) = 2if g(x)e”@B/2%ginlg . x dx.
Hence

A

G~ G+ Bl = 2 [ 1500l [sindp x| o

]

A

_IBI/ |g(x)||x|dx+2/ 1200 dx.
r<R r>R

The second integral on the right can be made less3pémy choosingR large enough since

g is absolutely integrable. WitR fixed, the first term can be made less thid@8 by selecting

|B| small enough. The proof is concluded. |
The analogue of Theorem 7.1 is
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THEOREM 7.7. Letg(x) andg,, (X) be absolutely integrable over> R and letg(x) —g,, (X)
be locally integrable. Then, i7,, () is locally continuous, so i€ (a).

Proof. The given conditions makeg(x) — g, (x) absolutely integrable. From Theorem 7.6

G (o) — G, (o) is locally continuous.

The theorem follows from the local continuity 6f,, (o). |
Both r# andrP log” r are suitable choices far(x) whend%ie() < —n. Butr~" is not. It

is not absolutely integrable over> R and its Fourier transform is not locally continuous as

can be seen from Theorem 4.3. Nevertheless it can be accommodated by means of

THEOREM 7.8. Letx;go(x) be locally integrable forj = 1,... ,n. Thengo(X)H(R — r)
can be included irg,, (x) in Theorem 7.7.

Proof. Sincex; go(X) H (R — r) is locally integrable and vanishes for- R it is absolutely in-

tegrable. Therefore its transform is locally continuous. Consequé@(ﬁo(a), whereGo(e)

is the transform ofo(X) H (R — r), is locally continuous for every. The continuity of grad

G, implies that ofGo and the proof is concluded. [
To relate the singularities of transforms we introduce

DEFINITION 7.3. A generalised functiog(x) such thatg(x) — g,,(X) is locally integrable
is said to be locally well-behaveddf,, («) is locally continuous.

Then we have

THEOREM 7.9. Letg(x) andh,,(x) be locally well-behaved. l»a‘j."{g(x) —h,, (X))} (N anon-

negative integer) is absolutely integrable over> R then 5§V{G(cx) — H, (o)} is locally
continuous. '

Proof. The statement is an immediate consequence of the conditions imposed and Theo-
rem?7.7. |
In effect Theorem 7.9 demonstrates thgx) and H,, (o) exhibit the same kind of singu-
lar behaviour. Another interpretation is that the behavioug @ at infinity determines the
singularities ofG (e). The theorem may be regarded as an inverse transform of Theorem 7.4.
An illustration of Theorem 7.9 is provided by takingx) = r'J,(r). This generalised
function is locally well-behaved because any terms which are not locally integrable may be
removed byg,, (x); the local continuity ofG,, («) follows from Theorem 7.8, Theorem 4.2 and
Theorem 4.3.

For largerr
-2 . ‘ ‘
g(X) = W {e'rf(v+1/2)m/2 + eflr*(\)+l/2)m/2} +0 (r\)73/2). (58)
TT

The generalised functions in (58) are locally well-behaved by the same argument as was used
for r*J,(r). The order term is absolutely integrable over R solongas < 3/2—n. Hence,
by Theorem 7.9 withv = 0, the transform of*J,(r) has the same singularities as those of
the transform of the generalised functions on the right-hand side of (58) wkeBy/2 — n.
The Fourier transforms ofr# are derived in Appendix A. By the remark at the end of
the appendix their dominant behaviour is available from (A.§) # —n/2 — 1/2 — k and
(A.10) if p = —n/2 — 1/2 — k. Hence (A.8) may be quoted when# —n/2 — k and it
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is found that the singular behaviour coincides precisely with that furnished by Theorem 6.2
and Theorem 6.3. On the other hand, whes —n/2 — k, (A.10) supplies singular terms in
agreement with those in Theorem 6.4.

Although the illustration has verified Theorem 7.9 only foi< 3/2 — n the result can
be extended to higher values wby including more terms in the asymptotic development of
Jy(r). Thereby the order term is reduced so thabay be increased while retaining integra-
bility at infinity. According to Appendix A the extra terms have Fourier transforms which are
less singular than that provided by (58). Consequently, the dominant behaviour is unaffected
by the increase in and the restriction on its size can be dropped.

In principle, more terms in the expansion in the neighbourhood of a singularity can be
obtained from the asymptotic development/ofr). It would be necessary to calculate further
terms in the transforms of€”# beyond those in the appendix where only the leading terms
in the expansion have been set out.

Appendix A

In this appendix the generalised functiorf’e® is considered. The constaais allowed to
be complex subject tdie(c) > 0 so that|ph(c)| < =/2. Initially it will be assumed that
Re(c) > 0. Later the case whedite(c) = 0 will be discussed but, since = 0 has been
handled already in Section 2, the condition 0 is imposed throughout. The generalised
function may be defined in an obvious way by

o0

—cr (=) m
e rb :Z — B, (A1)
m=0
its properties can then be deduced from those® afi Section 2. Thus, if # 2 —n — k,
(VZ—e2e P =BB+n—2e P2 —c(n+2p — De bt (A.2)
from Definition 2.1 and, i # —n —k,
E)je*”r6 = ije*"rﬂ*2 — cxjefcrrﬁfl (A.3)

from (5). On the other hand, (13) supplies
(VZ _ CZ)efcrr27n72k — 2k(2k +n— z)efcrr7n72k _ C(3 —n— 4k)e7crrlfn72k
~ Xk: 2" (n+ bk — dm — ) 2(V2)RmE(x)
= @m)!(n/2+k —m— Dk — m)|2%k—2m—1

(A.4)

and
(V2— el =2 — 2k +1)(2k+n—Der "% _c1—n—4dk)er &
Kol (n 4 Ak — dm — 2y (V)R (x)

. (A5
* n; Cm+D'(n/24+k —m— 1)k — m)122%k-2m-1 (A.5)
Also
aje—crr—n—Zk — (_n+2k)xje—crr—n—2k—2_cxje_crr_n_Zk_l
2p . VZ k7p+16 X
Y5 LVTI00 (A.6)
(2p)! (n/2+ k — p)!(k — p + 1)122-2p+1

p=0
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and
8jef“rr7"72k*l = —(n+2k+ l)xje*”r*”*Zk*:*’ _ cxje*”r*”*z"*z
Xk: CZP+1 X; (VZ)k7p+16(X) (A 7)
— Cp+ D! (n/2+k — p)l(k — p + 1)122%k=2p+1" :

For the Fourier transform we have
THEOREM A.1. If B # —n — k the Fourier transform o&=<"rf is

PB+n—1)!

2
2 —p— o
w2 2 1F<%ﬁ+%’“’ %6+%n+%’%n,—§).

Proof. When %e(B) > —n the transform has been calculated already in the proof of The-
orem 4.2. It takes the form quoted after a standard transformation of the hypergeometric
function. The formula can be extended to lower value$ by taking advantage of (A.2).
This enables the transform of€rf~2 to be calculated from higher values ffBy drawing
benefit from the relation

Pn+2p—DF (3p+3n.38+3n— 1. 3n. -5
—(®+a)PB+n—1F (%ﬁ-;— In, 3B+ in+

2

= B (3p+in—13p+ 30— 1 40— %)

|Q
Nl
N—"

NI o
NI
S
|
3 |$2
VAN
N—

it can be confirmed that the same formula is obtained fiteplaced by — 2. The proof is
concluded. [

The transform whegf takes one of the values excluded by Theorem A.1 is slightly more
complicated because there are two cases to consider

THEOREM A.2. The Fourier transform o&=<"r—"~% is

k o
ny2, 2k {V(2k — 2m) —logc} 7" 0r0/2,2k (2m — 2k — 1)!z"
e Z(2k—2m)!m!(n/2+m—l)!22’"—1+ ALY m\(n/2+m — 11227

m=0 m=k+1

and ofe="p—2%-1ljg

/221 Xk: {U(2k +1—2m) —logc} 7™
= (2% +1—2m)lm!(n/2+m — 1)122n-1

X (2m— 2k —2)Iz"
/2,21 (
e Z ml(n/2+m — 1)122n

m=k+1
wherez = —a?/c?.
Proof. Since

k 2p n/2 o2yk—
. . . c oL \Y% Py(X
efcrr7n72k = Lim e*CVrM*”*Zk § : ( ) ( )

n—0 — @p)! (n/24+k — p — DIk — p)12%k-2r-1,
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the Fourier transform of & 2% js
— 2k —1)!
Lim | =2~ DYy
(n/2 — 1)
k

02 (%u —k, %u —k+

NI

n,z)

NI

’

n—0
021’31"/2(—0(2)"*1’
~ L Ok - DIk~

p=0

by Theorem A.1. Whetz| < 1 the hypergeometric function can be expanded in the usual
series. The first terms contain 41 and, if . is made zero in the remaining factor, the last
series in{} is cancelled. Therefore the limit can be calculated as the derivative with respect to
i in the firstk terms plus the sum of the remaining terms (witk= 0) in the hypergeometric
series. The result is the formula quoted in the theorem. Although demonstrated fod. it

turns out (as will be verified shortly) that the infinite series is a regular functiarirothe z-

plane cut along the positive real axis from 1 to infinity. Accordingly, the restrictign|te: 1

can be dropped.

A parallel procedure gives the transform of’e—"~%~1 and the proof is finished. H

Neither the transform of Theorem A.1 nor that of Theorem A.2 possesses a singularity
unlessy? approaches-c2. This can never occur wheke(c) > 0 as has been assumed hitherto.
Therefore, what happens wh&é(c) = 0 will be considered now.

As ¢ — ib (b positive) the point of observation may approach the branch line of the
transforms obtained already. In order to stay on the principal branch it is hecessarg=that
—a?/c?) be such that G< ph(z — 1) < 2m whende(c) # 0. Hence, ag — ib,

2

z—le%—l—i—io

and 1— z — e '"(a?/b? — 1+ i0) in any analytic continuation. Thus, we have

THEOREM A.3. Under the conditions of Theorems A.1 and A.2 the Fourier transform of
e "’rf (b > 0) is obtained by replacing byib, z—1bya?/b?>—1+i0 and1—z by € (a?/b*—
1+ i0). For the transform of & rf change the sign afthroughout the replacements..

Analytic continuation of the hypergeometric function wiest —n — k shows that the
singular part of the Fourier transform of & r® is

—n/2—p—1/2

(B + 1n — Ly12+n g n=D/2(p)~b-ngin/2+4+1/2)7i (z_j 14 iO)

xF(—3B,—3p— 3,1 —B—in e™(®/b?>—1+i0))

so long as$ + n/2 + 1/2 is not an integer. Consequently, the dominant singularity of the
transform of &% rf is

2 —nj2—p-1/2
(B + 3n — I D2 (Fip) P et/ H/AT (% ~-1F iO) (A.8)

whenp # —n — k andf +n/2+ 1/2 is not an integer. Whep+n/2 + 1/2 is an integer the
analytic continuation of the hypergeometric function takes a different forpa-if /2+1/2 =

m wherem is a positive integer the dominant behaviour at the singularity of the transform of
eiibrr—n/2—1/2+m is

(m _ 1)!2n/2+mfl/2(_l)mT[(nfl)/Z(:Fib)7m7n/271/2(a2/b2 -1 ¥ io)fm. (Ag)
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It will be noticed that (A.9) is, in fact, the same as would be obtained from (A.8) by substitu-
tion of = —n/2 — 1/2+ m. Of course that observation is limited to the dominant behaviour
near the singularity. Inclusion of the terms of lower order near the singularity would bring
logarithms into (A.9) but not (A.8).

Whenp = —n/2 — 1/2 — k the restrictionk < n/2 — 1/2 is imposed whem is odd to
maintaing within the scope of Theorem A.1. With that understanding the analytic continuation

of the hypergeometric function gives the dominant singular behaviour of the transform of
e:l:ibr’,.—n/Z—l/Z—k as

n(=1/2 2

2 k
_on/2-k-1/2T - (Fib)k—n/21/2 (],2 _ l) {Iog o

Whenp = —n — 2k the singularity (if any) of the transform is given by the infinite series
in Theorem A.2. Since the dominant behaviour is dictated by the terms at infinity it can be
identified withn®~Y/2(3¢)*®(z, 3n + 5 + 2k, 1) where

‘ + i H (a? — } (A.10)

oo

Oz, 5, D =) (m+DH7°"
m=0
The function®(z, s, 1) is regular in thez-plane cut along the positive real axis from 1cto
whenRe(s) > 0, which verifies an earlier statement. Wheis not a positive integer the
dominant singularity whenis near 1 is provided by

®(z,s,1) >~ —(_TS)!(e’Ti logz)*~!

and, whers is the positive integet, by

m—1
Dd(z,m,1) ~ — % log(e ™ logz).

Hence, whem is even the dominant singular behaviour of the Fourier transfornfiéf e
—n—2k ;
is

(—%I/L _ % _ Zk)!n(n—l)/Z(_1)ke:|:(n—1)ni/2(a2 _ b2 T io)n/2—1/2+2k/22kbn—l+2k. (All)

r

Whenn is odd the corresponding result is

2 2\n/2—1/2+2k k
(a2 — p2)n/2-1/2+2k(_1) n("—1>/2{log

C(An— L2122t

‘ + miH (o — bz)} (A.12)

Likewise the dominant singular behaviour of the Fourier transformtéf e ~2-1 js
(—%n _ % — 2k — 1)1V (gy (— 1)k HieEn D/
(02 — b2 T {0)"/2+1/2+2k j 92kt pyn+2k (A.13)
whenn is even and
(OLZ _ b2)n/2+l/2+2k(_1)k
Gn 4 L 222kt

(Fi)m=D/2 {Iog ‘ + ntiH (o® bz)} (A.14)
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whenn is odd.

Observe that (A.11) and (A.13) are the same as would be given by (A.8pwith-n — 2k
andp = —n—2k—1, respectively. Also (A.12) and (A.14) fit in with (A.10) if the restriction on
kwhenn is odd is lifted. It may be concluded, therefore, thet far as the dominant singular
behaviour of the transform @'*"r# is concerned the formulgA.8) may be employed unless
B=-n/2—1/2— k when(A.10) should be used.

Appendix B

The following is a list of some Fourier transforms.

Table 1. Some Fourier transforms

9(x) G(ar)
r2—1f BU(—1)(2m)" /22 {a P25, 1o (@) cosinm +a B2y g o(a) sindnm)
B not an integer
@2 —1f Bl(2my /2P aBn/2 00\ o(a)
B not an integer
k —m
2 — Dk K=D)L myn/20k L =k=n/2 5 o) — 212~k /2 5 (Zi)(kk_”?‘;g?c)}
m=0 ’
(r2 -1k ki) /22Pk a2 (@)
30 (2 — 1) (—DF @y 2k 2, 5 g g (@)/25HE
_ n/2
r2— 1" o2 [ {wom — 1) — tog Ja} o =1/21, 2 (@)
(=2 {20 g (@) cosFa + 02, (@) sindnr u:o]
_ n/2;_qym—1
(r2— 1" o [{wom -1 —tog da} w1720, 5@+
—nj2 )0
+ o1/ {Wjufern/Z(Ol)}M:O
(r2—1+i0)B 2n/2+ﬁ,-[n/2+le(f5+ﬂ/2—1/2)ﬂla—ﬁ—n/zyfp)_n/z(a)/(_g — 1!

B not an integer

r2—1-i0)P
B not an integer

zn/2+ﬁ“"/2+1e_(ﬁ+n/2_1/2)mOL_S_"/ZHEJQ)_”/Z(OL)/(—B — 1!
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