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Abstract. Some singular generalised functions of several variables are introduced and their properties described.
They are used to support some general theorems to the effect that (a) the singularities of a generalised function are
responsible for the behaviour of its Fourier transform at infinity and (b) the behaviour of a generalised function at
infinity determines the singularities of its Fourier transform.
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1. Introduction

When I was on the staff of the University of Manchester the Department of Applied Mathe-
matics held seminars in the afternoon of every Monday and Friday (and Saturday sometimes).
Attendance at these seminars by staff and post-graduate students was strongly advisedi.e.
compulsory. The intention was to make members of the department aware of the latest ad-
vances throughout applied mathematics (e-mail had yet to be invented) and many international
figures presented the lectures. It was a marvellous experience for an Assistant Lecturer except
on those terrifying days when one was the designated speaker.

As a result of these seminars we knew that rigorous theories of theδ-function were being
developed by Schwartz, Mikusiński, Silva and others. But none of these theories seemed suit-
able for the applied field (this was well before weak solutions became all the rage). Then one
day George Temple gave a seminar which explained his ideas for an appropriate starting point
for applied mathematicians. James Lighhill saw their importance immediately and set about
constructing a working tool. Shortly thereafter his bookAn Introduction to Fourier Analysis
and Generalised Functions[1] was published. I do not know how long it took James to write
the book but I suspect that it was only a few days. At that time the speed and depth of his
thinking appeared supersonic to those of us who proceeded at a subsonic pace. (He was a
redoubtable player in the games at the annual Christmas party once he had finished his stint at
the piano.) If you floated an idea before him on Friday and it took his fancy you could easily
find that he had worked up a fully developed theory by the following Monday. The short time
which elapsed between the Temple seminar and the appearance of the book precludes any
long preparation. Yet the contents of the book have proved so valuable that it is still in print
over 40 years later.

The book by James deals with generalised functions of a single variable and I decided to try
to extend his ideas to several variables. The result wasGeneralised Functions[2] published in
1966. For both books the definitions of certain generalised functions had to be settled. Singular
generalised functions are of great importance in applications. They occur in the force-fields
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of point sources and in the propagation of wavefronts. They may arise also in the solution of
the differential form of boundary value problems. However, their definition is not free from
ambiguity and a symbol may have different meanings for different writers. When singular
generalised functions are involved in formulae it is always necessary to check the defintions
being employed.

The reason why different definitions occur can be explained as follows. Suppose that, in
one dimension, the generalised functionx−1

+ is to be defined. It is equal to 1/x for x > 0 and
0 for x < 0. Since any generalised function can be multiplied byx it would be expected that

x.x−1
+ = H(x) (∗)

whereH(x) is the Heaviside step friction which is 1 forx > 0 and 0 forx < 0. It is
permissible to take a derivative by the usual product rule and so

x−1
+ + x.(x−1

+ )
′ = δ(x) (∗∗)

It would be convenient ifx−1
+ obeyed rules similar to those for 1/x so that(x−1

+ )′ = −x−2
+ and

x.x−2
+ = x−1

+ . Unfortunately, that leads to an inconsistency in (∗∗) because the left-hand side
vanishes then.

A similar difficulty is present in three dimensions. The quantity(x2 + y2 + z2)−3/2 and
its derivatives turn up in electricity and magnetism when dealing with point sources and
multipoles. If(x2 + y2 + z2)−1/2 is written asr the analogue of (∗) is

r2.r−3 = r−1.

Application of the Laplacian∇2 to this relation leads to

6r−3 + 4

(
x
∂

∂x
+ y ∂

∂y
+ z ∂

∂z

)
r−3+ r2 · ∇2r−3 = −4πδ(x)δ(y)δ(z).

If now it is asked that the usual formulae∇2r−3 = 6r−5, r2.r−5 = r−3 and(
x
∂

∂x
+ y ∂

∂y
+ z ∂

∂z

)
r−3 = 3r−3

hold there is an inconsistency again.
It may be mentioned that in four dimensions, a similar problem arises for(c2t2−x2−y2−

z2)−2 but details will be omitted.
Thus, it appears that, for a single variable, there is no way of definingx−m+ , with m a

positive integer, so that both the standard rule for the derivative(x−m+ )′ = −mx−m−1
+ and the

standard rule for multiplicationx.x−m−1
+ = x−m+ are retained. Moving to higher dimensions

does not resolve matters.
The method which James devised to surmount this hurdle was to regardx−1

+ + Cδ(x), for
any constantC, asx−1

+ also; then (∗) remains valid sincex.δ(x) = 0. Furthermore,x−2
+ =

(x−1
+ )′ + C1δ

′(x) for any constantC1 in the Lighthill theory. The presence of the arbitrary
constants renders (∗∗) consistent withx.x−2

+ = x−1
+

I adopted the same device in my book. However, it became clear from the reaction of
readers that they found this a confusing procedure especially when handling more complicated
singular generalised functions. So, when I came to write a new version [3] of my book, I
decided to abandon the Lighthill pattern and choose between multiplication and the derivative.
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I opted to retain the usual rule for multiplication so thatx.x−m+ = x1−m+ . The price was a more
complex rule for the derivative since it was no longer possible to have(x−m+ )′ = −mx−1−m+ .
Of course, it is perfectly possible to have a consistent theory which retains the rule for the
derivative at the expense of multiplication. The same notation may mean different things for
different authors. When a singular generalised function is encountered it is always essential to
check what definition the author is employing.

Not all singular generalised functions require special attention. Some, such asx−m, are
in common currency and comply with the standard rules for both multiplication and the
derivative. On the other hand,|x|−m does not. It will be seen subsequently that basically
one technique is deployed in defining generalised functions which can exhibit singularities.
Suppose that a generalised function depends on the parameterβ, becoming singular for some
range ofβ. In essence, definitions are extended from values ofβ where the generalised function
is conventional by analytic continuation in the complexβ-plane. If the analytic continuation
covers all values ofβ no special treatment is necessary. Only where the analytic continuation
fails have additional definitions to be supplied.

The importance of singular generalised functions and their Fourier transforms stems from
their occurrence in a variety of applications. Some applications have been alluded to already.
Others include the Hadamard finite part, Liouville fractional derivatives, splines and the theory
of wavelets to mention a few examples.

In the following pages, where I have attempted to extend the theory of James on the
singularities of Fourier transforms of a single variable to several variables, I have retained
multiplication in standard form. Apart from this deviation from his way of doing things, I
hope that my treatment is in line with what James would have done, though probably his
exposition would have been more elegant and illuminating.

Section 2 contains a brief reminder of the Temple-Lighthill theory of generalised function
together with a discussion of properties of the powersrβ of the radial distance. In Section 3
the generalised functionrβ logm r is handled. The Fourier transforms ofrβ andrβ logm r are
obtained in Section 4.

More complicated singularities can occur in generalised functions of several variables than
those of a single variable. They need not be confined to a single point. An example is given in
Section 5 where the generalised functions are singular on a boundary.

The preceding theory is adapted in Section 6 to the Bessel generalised functionrνJν(r). Its
properties are studied and its Fourier transform derived.

Section 7 is devoted to an investigation of the relation between a generalised function and
its Fourier transform. On the one hand it is shown that, under fairly general conditions, the
singularities of a generalised function dictate the behaviour of its transform at infinity. On the
other hand the behaviour of the generalised function at infinity controls the singularities of its
transform. The theory is illustrated by means of examples from the earlier sections.

An appendix contains some material which is needed in Section 7. It has been separated
off to avoid an undue interruption of the argument in Section 7.

2. Singular generalised functions inRn

A typical point ofRn will be identified by the vectorx or by the Cartesian componentsx1,
x2, . . . , xn. The radial distance will be denoted byr so thatr = (x2

1 + x2
2 + . . . x2

n)
1/2.

The generalised partial derivative∂/∂xi will be abbreviated to∂i; it may be taken as the
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conventional partial derivative in appropriate circumstances. The Laplacian∇2 wil signify the
usual operator generalisedi.e.

∇2 = ∂2
1 + ∂2

2 + . . .+ ∂2
n.

An integral over the whole ofRn will be written∫ ∞
−∞

g(x)dx.

The basis of the Temple-Lighthill theory of generalised functions is the notion of a good
function as Lighthill called it. A good functionγ(x) is infinitely differentiable everywhere on
Rn and

lim
r→∞

∣∣rk∂p1
1 ∂

p2
2 . . . ∂pnn γ(x)

∣∣ = 0

for every radial direction, every integerk ≥ 0 and all integersp1 ≥ 0, p2 ≥ 0, . . . , pn ≥ 0.
A generalised functiong(x) is defined by a sequence{γm(x)} of good functions such that∫ ∞

−∞
g(x)γ(x)dx = lim

m→∞

∫ ∞
−∞

γm(x)γ(x)dx

for every goodγ, provided that the limit exists. All sequences which give the same limit are
regarded as equivalent and define the same generalised function.

Since the derivative of a good function is good the sequence{∂jγm(x)} defines the gener-
alised derivative∂jg(x). The property∫ ∞

−∞
{∂jg(x)}γ(x)dx = −

∫ ∞
−∞

g(x)∂jγ(x)dx

follows from∫ ∞
−∞
{∂jγm(x)}γ(x)dx = −

∫ ∞
−∞

γm(x)∂jγ(x)dx

It can be shown that any generalised function can be expressed in terms of generalised
derivatives via

g(x) = ∂p1
1 ∂

p2
2 . . . ∂pnn f (x),

where the conventionalf (x) is continuous onRn and∫ ∞
−∞
{|f (x)| /(1+ r2)N} dx <∞

for some finiteN . This offers an alternative route for defining a generalised function.
Multiplication is less straightforward because the product of two generalised functions

is undefined except in special circumstances. For the purpose of multiplication fairly good
functions are introduced. The functionβ(x) is fairly good when it is infinitely differentiable
on Rn and, together with all its derivatives, is bounded at infinity byrN for some finiteN .
Sinceβ(x)γ(x) is good the sequence{β(x)γm(x)} definesβ(x)g(x) with the property∫ ∞

−∞
{β(x)g(x)}γ(x)dx =

∫ ∞
−∞

g(x){β(x)γ(x)} dx.



Singularities of Fourier transforms443

In other words it is possible to multiply any generalised function by a fairly good function.
Note thatxj andr2 are fairly good butr is not. Hence the multiplication undertaken in the

introduction is justified.
Moreover∫ ∞
−∞

∂j (βg)γ dx = −
∫ ∞
−∞

βg∂jγ dx = −
∫ ∞
−∞

g{∂j (βγ)− γ∂jβ} dx

=
∫ ∞
−∞
(β∂jg + g∂jβ)γ dx,

verifying the standard rule for the generalised derivative of a product of a fairly good function
and a generalised function. This confirms the validity of the derivatives calculated in the
introduction.

A sequence{gµ(x)} of generalised functions possesses a generalised limitg(x) asµ→ 0
if, and only if,

lim
µ→0

∫ ∞
−∞

gµ(x)γ(x)dx =
∫ ∞
−∞

g(x)γ(x)dx

for every goodγ(x). The generalised limit will be denoted by Limµ→0 gµ(x) in order to avoid
any confusion with the conventional limit limµ→0 gµ(x) (which may or may not exist when
the generalised limit does).

It is transparent that the generalised limit coincides with the conventional limit when the
conventional one exists. In addition, when the generalised limit exists it is an easy deduction
that

Lim
µ→0

∂jgµ(x) = ∂jg(x),

i.e. a derivative and the generalised limit can be interchanged. It is also a simple matter to
include a linear change of variable so that

Lim
µ→0

gµ(a1x1 + b1, . . . , anxn + bn) = g(a1x1 + b1, . . . , anxn + bn)

with a1, . . . , an andb1, . . . , bn constants. Another result is

Lim
µ→0

β(x)gµ(x) = β(x)g(x),

so that it is always permissible to interchange the generalised limit and multipliation by a
fairly good function.

Points in the Fourier transform space will be denoted by the vectorα with components
α1,α2, . . . ,αn. The letterα will be used for the radial distance so thatα = (α2

1 + α2
2 + . . . +

α2
n)

1/2. A Fourier transform will be indicated usually by a capital lettere.g.

0(α) =
∫ ∞
−∞

e−iα·xγ(x)dx.

Since0(α) is good{0m(α)} defines a generalised fimctionG(α), the Fourier transform of
g(x), and

G(α) =
∫ ∞
−∞

e−iα·xg(x)dx.
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The Fourier inversion theorem then takes the form

g(x) = 1

(2π)n

∫ ∞
−∞

eiα·xG(α)dα.

It follows at once that Limµ→0 gµ(x) = g(x) implies

Lim
µ→0

Gµ(α) = G(α).
Evidently, the generalised limit is a much more powerful device than the conventional

limit. Not only can it exist when the conventional one does not but also it enjoys a much
greater flexibility. Its properties, as described above, will be used freely in the following pages
without special mention.

An infinite series
∑∞

m gm(x) is said to be generally convergent when LimM→∞
∑M

m gm(x)
exists. Clearly, a corvergent series is generally convergent. Also, from the above properties of
the generalised limit, derivatives and Fourier transforms can be taken term-by-term provided
suitable precautions are observed (see Jones [3, Chapter 5]).

The conventional functionrβ satisfies

∇2rβ = β(β+ n− 2)rβ−2 (1)

for any complexβ if the origin is excluded when the quantities become too singular. It is
certainly valid for<e(β) > 2− n since then both sides of (1) are conventional functions (rβ is
conventional if<e(β) > −n). It would be convenient if (1) were satisfied by the generalised
functionrβ. Thenrβ−2 could be obtained fromrβ and so, by stepping up two at a time inβ, a
conventional power would be reached eventually (this is the continuation process mentioned in
the introduction). Thusrβ−2 could be expressed via generalised derivatives of a conventional
function. However, the procedure of stepping up two at a time comes to a halt if either of the
factors on the right-hand side of (1) vanishes. This happens, for instance, whenβ = 2− n. It
follows thatr−n cannot be defined by (1). As a consequencer−n−2, r−n−4, . . . are undefined
as well. Another possible source of failure isβ = 0 but this arises only whenn = 2 (the
stepping up ceases whileβ is non-zero ifn ≥ 3) and it is known already thatr−2 is undefined
by (1) whenn = 2. Thereforeβ = 0 does not need to be considered further and (1) can be
used whenβ 6= −n− 2k (k = 0, 1, . . . ).

It is not too surprising that (1) fails forβ = 2− n since it can be shown that

∇2r2−n = −4πn/2δ(x)

(1
2n− 2)! (2)

which is actually zero whenn = 2 on account of the factorial being infinite. This shows also,
on puttingβ = µ+ 2− n in (1), that

Lim
µ→0

µrµ−n = 2πn/2δ(x)

(1
2n− 1)! . (3)

Apply the operator∇2 to (3) k times. Since generalised limits and derivatives can be inter-
changed (1) gives

Lim
µ→0

µrµ−n−2k = πn/2(∇2)kδ(x)

(1
2n+ k − 1)!k!22k−1

. (4)

The properties (3) and (4) suggest (k always signifies a non-negative integer)
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DEFINITION 2.1. The generalised functionrβ (β 6= 2− n− 2k) satisfies

∇2rβ = β(β+ n− 2)rβ−2.

The generalised functionr−n−2k is defined by

r−n−2k = Lim
µ→0

{
rµ−n−2k − πn/2(∇2)kδ(x)

(1
2n+ k − 1)!k!22k−1µ

}
.

Obviously, the generalised functionsrβ andr−n−2k agree with the conventional functions
rβ andr−n−2k respectively wheneverr > 0..

Since Limβ→β0r
β = rβ0 when 2− n > <eβ0 > −n, only conventional functions being

involved, it follows from (1) that Limβ→β0r
β = rβ0 so long asβ0 6= −n− 2k.

The conventional functionrβ satisfies

∂j r
β = βxj r

β−2. (5)

Therefore it is valid for 4−n > <e(β) > 2−n. Apply the operator∇2 and use the formula

∇2(xjg) = xj∇2g + 2∂jg (6)

to obtain

β(β+ n− 4){∂j rβ−2 − (β− 2)xj r
β−4} = 0.

The factorβ + n − 4 is non-zero andβ cannot be zero unlessn = 3. Hence (5) holds
for 2− n > <e(β) > −n with the possible exception ofβ = −2 and n= 3. But then the
generalised limit applied to (5) removes the exception. Thereafter repetition of the procedure
reducesβ by 2 and so (5) holds subject toβ 6= 2− n− 2k.

In fact (5) is valid forβ = 2− n also. From Definition 2.1

xj r
−n = Lim

µ→0
xj r

µ−n

sincexjδ(x) = 0. Invoking (5) on the right-hand side and taking the limit we have

∂j r
2−n = (2− n)xj r−n

which is the same as (5) supplies.Hence the only restriction on (5) isβ 6= −n− 2k.
Another result concerns the formula

r2.rβ = rβ+2 (7)

for conventional functions. Take 2− n > <eβ > −n, apply the operator∇2 and use

∇2(r2g) = r2∇2g + 4
n∑
j=1

xj ∂jg + 2ng. (8)

After taking account of (5) we obtain

β(β+ n+ 2)(r2.rβ−2 − rβ) = 0.

Cancellation of the non-zero factors leads to (7) withβ reduced by 2. Repetition of the process
verifies (7) forβ 6= −n− 2k.
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The conditionβ 6= −n− 2k on (7) can be dropped almost immediately. Sincexjδ(x) = 0

n∑
j=1

xj∂jδ(x)+ nδ(x) = 0

and then application of (6) repeatedly supplies

n∑
j=1

xj∂j (∇2)kδ(x) = −(n+ 2k)(∇2)kδ(x). (9)

Moreoverr2δ(x) = 0 and so (8) and (9) provide

0= (∇2)kr2δ(x) = r2(∇2)kδ(x)− 2k(n+ 2k − 2)(∇2)k−1δ(x). (10)

From Definition 2.1 and (7)

r2.r−n−2k = Lim
µ→0

{
rµ−n−2k+2 − πn/2r2(∇2)kδ(x)

(1
2n+ k − 1)!k!22k−1µ

}
= r−n−2k+2

by virtue of (10) and Definition 2.1. Thus, (7)is valid for any complexβ.
Consequently, it has been shown that multiplication ofrβ by r2 produces the same result

as when the restrictionr > 0 is imposed. As pointed out in the introduction this means that
the standard rule for the derivative may not hold for allβ. Formulae where modification is
necessary will be derived now.

Although (7) holds for any complexβ both (1) and (5) have to be altered whenβ = −n−2k.
From Definition 2.1 and (5)

∂j r
−n−2k = Lim

µ→0

{
(µ− n− 2k)xj r

µ−n−2k−2 − πn/2∂j (∇2)kδ(x)

(1
2n+ k − 1)!k!22k−1µ

}
.

The application of (6) toxjδ(x) = 0 gives

xj (∇2)kδ(x) = −2k∂j (∇2)k−1δ(x). (11)

Insertion of this result and taking the limit furnishes

∂j r
−n−2k = −(n+ 2k)xj r

−n−2k−2 + πn/2xj (∇2)k+1δ(x)

(1
2n+ k)!(k + 1)!22k+1

(12)

when benefit is drawn from (4).
It may be verified in a similar manner that (1) is modified to

∇2r−n−2k = (n+ 2k)(2k + 2)r−n−2k−2

−(n+ 4k + 2)πn/2(∇2)k+1δ(x)

(1
2n+ k)!(k + 1)!22k+1

. (13)

Both (12) and (13) would coincide with their conventional counterparts were it not for the
presence of the terms involvingδ(x).
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This section has concentrated on certain generalised functions with a singularity at the
origin. However, linear changes of variable are permissible and acceptable to the generalised
limit so that there is no difficulty in transferring the singularity to a point other than the origin
and introducing a dilation. This remark is relevant to later sections also where having the
singularity at the origin produces a convenient simplification of the analysis.

3. Logarithmic generalised functions

With the properties ofrβ available from the preceding section it is a relatively straightforward
matter to introduce logarithmic factors. Start with the case whenβ 6= −n− 2k.

DEFINITION 3.1. The generalised functionrβ logm r(β 6= −n − 2k) with m a non-negative
integer is defined by

rβ logm r = ∂m

∂βm
rβ.

An immediate consequence of this definition is that

∇2rβ logm r = ∇2 ∂
m

∂βm
rβ = ∂m

∂βm
∇2rβ

so that, from (1),

∇2rβ logm r = ∂m

∂βm
β(β+ n− 2)rβ−2

= β(β+ n− 2)rβ−2 logm r +m(2β+ n− 2)rβ−2 logm−1 r

+ m(m− 1)rβ−2 logm−2 r (14)

provided thatβ 6= 2− n− 2k.
By virtue of (5)

∂j (r
β logm r) = (βrβ−2 logm r +mrβ−2 logm−1 r)xj (15)

whenβ 6= −n− 2k while (7) provides

r2.rβ logm r = rβ+2 logm r. (16)

For the exceptional values ofβ take advantage of Definition 2.1 and introduce

DEFINITION 3.2. The generalised functionr−n−2k logm r is defined by

r−n−2k logm r = Lim
µ→0

∂m

∂µm

{
rµ−n−2k − πn/2(∇2)kδ(x)

(1
2n+ k − 1)!k!22k−1µ

.

}

That (16) holds for anyβ follows at once from Definition 3.2, (16) and (10).
Again the standard effect of multiplying byr2 has been retained at the expense of altering

the derivative for some values ofβ.
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From Definition 3.2, (15) and (11)

∂j (r
−n−2k logm r) = −(n+ 2k)xj r

−n−2k−2 logm r +mxjr−n−2k−2 logm−1 r

+ πn/2xj (∇2)k+1δ(x)

(−m)!(1
2n+ k)!(k + 1)!22k+1

. (17)

Notice that (17) agrees with (15) form ≥ 1. Also

∇2(r−n−2k logm r) = (n+ 2k)(2k + 2)r−n−2k−2 logm r +m(m− 1)r−n−2k−2 logm−2 r

− m(n+ 4k + 2)r−n−2k−2 logm−1 r

+
{

m

(1−m)! −
n+ 4k + 2

(−m)!
}

πn/2(∇2)k+1δ(x)

(1
2n+ k)!(k + 1)!22k+1

. (18)

Formula (18) is the same as (14) whenm ≥ 2.

4. Fourier transforms

In this section are derived the Fourier transforms of the singular generalised functions consid-
ered in the preceding two sections. The simplest case will be dealt with first. The symbol∇̃2

denotes the Laplacian inα-space.

THEOREM 4.1. The Fourier transform ofr2k is (−1)k(2π)n(∇̃2)kδ(α).

Proof. The Fourier transform ofδ(x) is 1. By the inversion theorem the Fourier transform of
1 is (2π)nδ(α). Since the Fourier transform ofxjg(x) is i∂̃jG(α), where the partial derivative
∂̃j is with respect toαj , the theorem follows at once. �

The corresponding theorem forrβ is

THEOREM 4.2. If β 6= 2k andβ 6= −n− 2k the Fourier transform ofrβ is

(1
2β+ 1

2n− 1)!
(−1

2β− 1)! 2β+nπn/2α−β−n.

Proof. Suppose, firstly, that 0> <eβ > −n. Then Limµ→0e−µr rβ = rβ since this is a
conventional result. In addition, withµ > 0, e−µr rβ is absolutely integrable. Therefore its
Fourier transform can be evaluated in spherical polar coordinates and∫ ∞

−∞
e−µr−iα·xrβ dx = (2π)n/2

∫ ∞
0

e−µr rβ+n−1
J 1

2n−1(αr)

(αr)
1
2n−1

dr

whereJν(z) is the standard Bessel function. The integral on the right is available in Watson
[4, p. 385] and gives

(β+ n− 1)!2πn/2

(1
2n− 1)!(µ2 + α2)(β+n)/2

F(1
2β+ 1

2n,−1
2β− 1

2,
1
2n,

α2

µ2+ α2
)

with F the usual hypergeometric function. Whenµ→ 0 a standard formula for the hyperge-
ometric function supplies

F(1
2β+ 1

2n,−1
2β− 1

2,
1
2n,1) =

(1
2n− 1)!π1/2

(−1
2β− 1)!(1

2n+ 1
2β− 1

2)!
.
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Also 0> <e(−β− n) > −n so that(µ2+ α2)−(β+n)/2 is conventional and

Lim
µ→0

(µ2+ α2)−(β+n)/2 = α−β−n.

Insertion of these limits and use of the formula(2z)! = z!(z − 1
2)!22z/π1/2 reproduces the

transform stated in the theorem. Hence the theorem is proved for 0> <eβ > −n.
The transform of∂jg(x) is iαjG(α). Accordingly, the transform of∇2rβ orβ(β+n−2)rβ−2

is−α2 times the previous result. Sinceβ 6= 0 andβ = 2− n would makeβ − 2 an excluded
value we see that the transform ofrβ−2 is the same as that forrβ with β− 2 for β. Repetition
of this argument reveals that the theorem is true for<eβ < 0 apart from the excluded values.

By the Fourier inversion theorem and what has been proved already

1

(2π)n

∫ ∞
−∞

(1
2γ+ 1

2n− 1)!
(−1

2γ− 1)! 2γ+nπn/2α−γ−neidα·xα = rγ

for <eγ < 0 and γ 6= −n − 2k. Putγ + n = −β so that<eβ > −n andβ 6= 2k. Then the
theorem is confirmed for this range ofβ.
The proof is complete. �

Observe that Theorem 4.1 can be recovered from Theorem 4.2 by allowingβ→ 2k. This
is confirmed by making the substitution−π/(−1

2β − 1)! = (1
2β)! sin 1

2βπ and calling on (4).
Since Limβ→2kr

β = r2k this is actually a check on consistency.
The remaining exceptional values are covered by

THEOREM 4.3. The Fourier transform ofr−n−2k is

(−1)kπn/2α2k

(1
2n+ k − 1)!k!22k−1

{
1
2ψ(

1
2n+ k − 1)+ 1

2ψ(k)− log 1
2α
}

whereψ(z) = z!′/z!, the prime indicating a derivative with respect to the argument.

Proof.By Definition 2.1 and Theorem 4.2 the Fourier transform ofr−n−2k is

Lim
µ→0

{
(1

2µ− k − 1)!
(−1

2µ+ 1
2n+ k − 1)!2

µ−2kπn/2α−µ+2k − (−1)kπn/2α2k

(1
2n+ k − 1)!k!22k−1µ

}
.

The replacement

(1
2µ− k − 1)! = (−1)k

(k − 1
2µ)! sin 1

2µπ

leads to

(−1)kπn/2
α2k

22k−1

[
∂

∂µ

2µα−µ

(k − 1
2µ)!(1

2n− 1
2µ+ k − 1)!

]
µ=0

which gives the formula stated in the theorem. The proof is finished. �
With regard to logarithms we have
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THEOREM 4.4. If β 6= 2k andβ 6= −n− 2k the Fourier transform ofrβ logm r is

(1
2β+ 1

2n− 1)!
(−1

2β− 1)! 2β+nπn/2α−β−nφm(β)

whereφ1(β) = 1
2ψ(

1
2β+ 1

2n− 1)+ 1
2ψ(−1

2β− 1)− log 1
2α and, form > 1,

φm(β) = φ1(β)φm−1(β)+ φ′m−1(β).

Proof.The theorem is an immediate consequence of Definition 3.1 and Theorem 4.2.�
Whenβ = −n− 2k the pertinent theorem is

THEOREM 4.5. The Fourier transform ofr−n−2k logm r is

(−1)kπn/2α2kτm+1(0)

(1
2n+ k − 1)!k!(m+ 1)22k−1

where

τ1(µ) = 1
2ψ(k − 1

2µ)+ 1
2ψ(

1
2n+ k − 1

2µ− 1)+ 1
2ψ(µ)− 1

2ψ(−1
2µ)− log 1

2α

and form > 1

τm(µ) = τ1(µ)τm−1(µ)+ τ′m−1(µ).

There is an alternative expression forτm(µ) which separates out the powers of logα, namely

τm(µ) =
m∑
p=0

m!(−1)p+m

p!(m− p)!χp(µ) logm−p α (19)

whereχ0(µ) = 1,χm(µ) = χ(µ)χm−1(µ)+ χ′m−1(µ) (m ≥ 1) and

χ(µ) = 1
2ψ(k − 1

2µ)+ 1
2ψ(

1
2n+ k − 1

2µ− 1)+ 1
2ψ(µ)− 1

2ψ(−1
2µ)+ log 2. (20)

Sinceτ1(µ) = χ(µ) − logα, Equation (19) is verified form = 1. Then induction confirms
(19) for generalm.
Proof.According to Definition 3.2 and Theorem 4.2 the Fourier transform ofr−n−2k logm r is

Lim
µ→0

∂m

∂µm

{
(1

2µ− k − 1)!2µ−2k

(−1
2µ+ 1

2n+ k − 1)!π
n/2α2k−µ − (−1)kπn/2α2k

(1
2n+ k − 1)!k!22k−1µ

}
.

Rewrite this expression as

(−1)kπn/2
α2k

22k−1
Lim
µ→0

∂m

∂µm

1

µ
{f (µ)− f (0)}

where

f (µ) = (1
2µ)!(−1

2µ)!2µα−µ

(k − 1
2µ)!(1

2n+ k − 1− 1
2µ)!

.

Consequently, the Fourier transform is

(−1)kπn/2
α2k

22k−1

f (m+1)(0)

m+ 1
.

Sincef (m)(µ) = f (µ)τm(µ) the proof is finished. �
The final exceptional value ofβ is dealt with in
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THEOREM 4.6. The Fourier transform ofr2k logm r is

(1
2n+ k − 1)!k!(−1)k+m22k+n−1πn/2

m−1∑
p=0

m!ρp(0)
p!(m−1−p)!α

−n−2k logm−1−p α

+ (−1)k+m(2π)nρm(0)(∇̃2)kδ(α)

whereρ0(µ) = 1, ρm(µ) = ρ(µ)ρm−1(µ)+ ρ′m−1(µ) (m ≥ 1) andρ(µ) = −χ(µ).

Proof.Either use Limβ→2kr
β logm r = r2k logm r and Theorem 4.2 or take the Fourier inverse

of Theorem 4.5 and employ (19), though this involves more manipulation.
The proof is ended. �

5. Another type of singularity

The generalised functionsrβ andrβ logm r have no singularity other than at the origin. With
this attribute they resemble the singular generalised functions in one dimension. But gen-
eralised functions inRn can have singularities on hypersurfaces. Discussion of generalised
functions which have singularities on conical-like boundaries is contained in Jones [3, Chap-
ter 8]. Therefore the case of a singularity at a conical point has been dealt with fully, so here
some generalised functions which have a singularity on a smooth boundary are examined. To
illustrate this feature we will consider powers ofr2 − 1 which can have singularities on the
surface of the unit sphere. The singularities can be transferred to other places and other shapes
by means of linear mapping. Since it is easy to carry out the transference only details forr2−1
will be given.

The non-negative integer powers ofr2 − 1 are covered by the preceding sections via the
binomial theorem. Negative integer powers require a definition since they are non-integrable.
In the followingmdenotes a positive integer.

DEFINITION 5.1. The generalised function(r2 − 1)−m is defined by

(r2− 1)−1 = 1

2

n∑
j=1

xj ∂j log
∣∣r2− 1

∣∣− 1,

(r2− 1)−m = −1

2(m− 1)

n∑
j=1

xj ∂j(r
2 − 1)−m+1 − (r2 − 1)−m+1 (m ≥ 2).

The function log|r2−1| is conventional and integrable. Alsoxj is fairly good so that(r2−1)−m
is a well-defined generalised function which agrees with the conventional version whenr2 6=
1.

The function(r2 − 1) log |r2 − 1| is conventional andr2 − 1 is fairly good. Therefore the
derivative may be calculated either by conventional or by generalised means. On equating the
two (r2− 1).(r2 − 1)−1 = 1. The more general result

(r2− 1).(r2− 1)−m = (r2− 1)−m+1 (21)

then follows from the definition without difficulty through induction. The conventional rule
for multiplication has been preserved.
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For more general powers ofr2 − 1 the change in sign asr passes through 1 has to be
circumvented. The device is to separate consideration ofr2 > 1 and r2 < 1. When<e(β) >

−1 let

(r2− 1)β+ = (r2− 1)βH(r2− 1)

whereH(x) is the Heaviside step function which is 1 forx > 0 and 0 forx < 0. In other
words(r2− 1)β+ is zero forr2 < 1.
Similarly

(r2− 1)β− = (1− r2)βH(1− r2)

is zero forr2 > 1.
Knowing (r2 − 1)β+ as a conventional function for<eβ > −1 we go to lower values ofβ

by generalised derivatives in a similar manner to that forrβ.

DEFINITION 5.2. Whenβ 6= −m the generalised functions(r2 − 1)β+ and (r2 − 1)β− are
given by

(r2− 1)β+ = 1

2(β+ 1)

n∑
j=1

xj ∂j (r
2− 1)β+1

+ − (r2 − 1)β+1
+ ,

(r2− 1)β− = (r2− 1)β+1
− − 1

2(β+ 1)

n∑
j=1

xj∂j (r
2 − 1)β+1

− .

If it be assumed that(r2 − 1).(r2 − 1)β+1
+ = (r2 − 1)β+2

+ , which is certainly true when<e(β)

is large enough,

n∑
j=1

xj∂j (r
2 − 1)β+2

+ =
n∑
j=1

xj∂j (r
2 − 1).(r2 − 1)β+1

+

= 2r2(r2− 1)β+1
+ + (r2 − 1)

n∑
j=1

xj ∂j(r
2 − 1)β+1

+ .

Replace the derivatives by means of Definition 5.2 to obtain

2(β+ 1)(r2 − 1)β+1
+ = 2(β+ 1)(r2 − 1).(r2 − 1)β+.

Sinceβ 6= −1

(r2− 1).(r2− 1)β+ = (r2− 1)β+1
+ . (22)

Induction then verifies (22) for allβ 6= −m.
In like manner

(r2− 1).(r2− 1)β− = −(r2− 1)β+1
− (23)

whenβ 6= −m.
The missing values ofβ are covered by
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DEFINITION 5.3. The generalised functions(r2− 1)−m+ and(r2 − 1)−m− are defined by

(r2− 1)−m+ = Lim
µ→0

{
(r2− 1)µ−m+ − (−1)m−1δ(m−1)(r2 − 1)

(m− 1)!µ
}
,

(r2− 1)−m− = Lim
µ→0

{
(r2− 1)µ−m− − δ(m−1)(r2− 1)

(m− 1)!µ
}
.

It is necessary to check that the generalised limits exist. It will be sufficient to indicate the
method form = 1. Now, from Definition 5.2,

(r2− 1)µ−1
+ = 1

2µ

n∑
j=1

xj∂j (r
2 − 1)µ+ − (r2− 1)µ+ (24)

The conventional function(r2− 1)µ+ can be expanded in powers ofµ so that

(r2− 1)µ+ = H(r2− 1)
{
1+ µ log

∣∣r2 − 1
∣∣+O(µ2)

}
.

Then the right-hand side of (24) becomes

1

µ
δ(r2− 1)+ 1

2

n∑
j=1

xj ∂j
{
H(r2− 1) log

∣∣r2 − 1
∣∣}−H(r2− 1)+ o(1)

asµ→ 0. Hence

(r2− 1)−1
+ =

1

2

n∑
j=1

xj∂j
{
H(r2− 1) log

∣∣r2− 1
∣∣}−H(r2− 1). (25)

Similarly

(r2− 1)−1
− = H(1− r2)− 1

2

n∑
j=1

xj ∂j
{
H(1− r2) log

∣∣r2 − 1
∣∣} . (26)

By combining (25) and (26) we have, sinceH(x)+H(−x) = 1,

(r2− 1)−1
+ − (r2 − 1)−1

− =
1

2

n∑
j=1

xj∂j log
∣∣r2 − 1

∣∣− 1= (r2 − 1)−1 (27)

on quoting Definition 5.1.
Since, by (22),

(r2− 1).(r2− 1)−m+ = Lim
µ→0

{
(r2− 1)µ−m−1

+ − (−1)m−1(r2− 1)δ(m−1)(r2− 1)

(m− 1)!µ
}

and

(r2− 1)δ(k)(r2− 1) = −kδ(k−1)(r2 − 1) (28)

it follows that (22) holds whenβ = −m. Similarly, (23) is valid also whenβ = −m. Conse-
quently,the usual rule for multiplication byr2−1 has been adhered to.The exceptional cases
for the derivative will be dealt with now.
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By applying∂j in Definition 5.3 and calling on Definition 5.2 we find, after use of (28),

1

2

n∑
j=1

xj ∂j (r
2− 1)−m+ = −m {(r2 − 1)−m−1

+ + (r2− 1)−m+
}

+ (−1)m

m! δ(m)(r2 − 1)+ (−1)m−1

(m− 1)!δ
(m−1)(r2 − 1), (29)

1

2

n∑
j=1

xj ∂j (r
2− 1)−m− = −m {(r2 − 1)−m− − (r2− 1)−m−1

−
}

+ 1

(m− 1)!δ
(m−1)(r2 − 1)− 1

m!δ
(m)(r2− 1). (30)

From (29) and (30)

1

2

n∑
j=1

xj ∂j
{
(r2− 1)−m+ + e−mπi(r2− 1)−m−

}
= −m {(r2 − 1)−m+ + e−mπi(r2− 1)−m− + (r2− 1)−m−1

+ + e−(m+1)πi(r2 − 1)−m−1
−

}
.

If now

(r2− 1)−m+ + e−mπi(r2− 1)−m− = (r2− 1)−m, (31)

which is true form = 1 by (27), Definition 5.1 gives

m(r2− 1)−m−1 = m {(r2− 1)−m−1
+ + e−(m+1)πi(r2 − 1)−m−1

−
}
.

But, sincem 6= 0, this is the same as (31) withm replaced bym + 1. Hence (31) is verified
for all m by induction.

The function(r2 − 1+ iε)β, with ε > 0, is well-defined for all values ofr so long as the
phase of the complex numberr2−1+ iε is specified. It will be taken to lie in the range(0,π).
Also the phase ofr2−1− iε will be restricted to(−π,0). With these conventions on the phase
we introduce

DEFINITION 5.4. The generalised functions(r2− 1± i0)β are defined by

(r2− 1± i0)β = Lim
ε→+0

(r2− 1± iε)β.

Since

1

2β

n∑
j=1

xj∂j (r
2 − 1± iε)β − (r2 − 1± iε)β = (1∓ iε)(r2 − 1± iε)β−1

it follows that

1

2β

n∑
j=1

xj∂j (r
2 − 1± i0)β − (r2− 1± i0)β = (r2− 1± i0)β−1. (32)

It is obvious that, when<e(β) > −1,

(r2− 1± i0)β = (r2− 1)β+ + e±βπi(r2 − 1)β−. (33)
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Apply the operator
∑n

j=1 xj∂j and invoke (32). Then Definition 5.2 reproduces (33) withβ

reduced by 1. Hence (33) holds for allβ except possibly forβ a negative integer. On account
of (22) and (23)

(r2− 1).(r2− 1± i0)β = (r2− 1± i0)β+1 (34)

and the standard rule for multiplication is applicable.
Now

1

2

n∑
j=1

xj ∂j log(r2 − 1± iε)− 1= (1∓ iε)(r2 − 1± iε)−1

so that

(r2− 1± i0)−1 = Lim
ε→+0

1

2

n∑
j=1

xj∂j log(r2− 1± iε)− 1

= 1

2

n∑
j=1

xj∂j
{
log

∣∣r2 − 1
∣∣± πiH(1− r2)

}− 1

= (r2 − 1)−1∓ πiδ(r2− 1)

from Definition 5.1. More generally

(r2− 1± i0)−m = (r2− 1)−m ∓ (−1)m−1πi

(m− 1)! δ(m−1)(r2 − 1). (35)

One consequence of (35) is that (32)continues to hold whenβ = −m, as may be confirmed
via Definition 5.1 and (28). Another inference is that (34) is valid whenβ = −m.

Another property is of interest. From (33)

Lim
µ→0

(r2 − 1± i0)µ−m = Lim
µ→0

{
(r2 − 1)µ−m+ + e±(µ−m)πi(r2 − 1)µ−m−

}
.

On substitution from Definition 5.3 the right-hand side becomes

(r2− 1)−m+ + e∓mπi(r2− 1)−m− ∓
(−1)m−1πi

(m− 1)! δ(m−1)(r2 − 1).

The use of (31) and (35) leads to

Lim
µ→0

(r2 − 1± i0)µ−m = (r2− 1± i0)−m. (36)

Logarithmic factors can be introduced in a similar manner to that of Section 3 except for
(r2− 1)−m which has a different kind of definition. For such powers the appropriate approach
is

(r2− 1)−1 logp
∣∣r2− 1

∣∣ = 1

2(p + 1)

n∑
j=1

xj ∂j logp+1
∣∣r2− 1

∣∣ − logp
∣∣r2 − 1

∣∣ .
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Lower powers ofr2− 1 can be deduced from

1

2

n∑
j=1

xj ∂j (r
2− 1)1−m logp

∣∣r2− 1
∣∣ =

(1−m) {(r2 − 1)1−m logp
∣∣r2 − 1

∣∣+ (r2 − 1)−m logp
∣∣r2− 1

∣∣}
+ p {(r2− 1)1−m logp−1

∣∣r2− 1
∣∣+ (r2− 1)−m logp−1

∣∣r2− 1
∣∣} .

The more explicit

(r2− 1)−m logp
∣∣r2 − 1

∣∣ =
−

p∑
q=0

p!
(p−q)!2(m−1)q+1

n∑
j=1

xj ∂j (r
2− 1)1−m logp−q

∣∣r2 − 1
∣∣− (r2− 1)1−m logp

∣∣r2 − 1
∣∣

for m > 1 may be preferred. Standard multiplication still appliesi.e.

(r2− 1).(r2− 1)−m logp
∣∣r2 − 1

∣∣ = (r2 − 1)1−m logp
∣∣r2 − 1

∣∣ .
The analogous formulae for(r2− 1)β± logp

∣∣r2 − 1
∣∣ are

1

2

n∑
j=1

xj ∂j (r
2− 1)β+1

+ logp
∣∣r2− 1

∣∣ =
(β+ 1)

{
(r2 − 1)β+1

+ logp
∣∣r2 − 1

∣∣+ (r2 − 1)β+ logp
∣∣r2− 1

∣∣}
+ p

{
(r2 − 1)β+1

+ logp−1
∣∣r2 − 1

∣∣+ (r2 − 1)β+ logp−1
∣∣r2 − 1

∣∣}
and

1

2

n∑
j=1

xj ∂j (r
2− 1)β+1

− logp
∣∣r2− 1

∣∣ =
(β+ 1)

{
(r2 − 1)β+1

− logp
∣∣r2 − 1

∣∣− (r2 − 1)β− logp
∣∣r2− 1

∣∣}
+ p

{
(r2 − 1)β+1

− logp−1
∣∣r2 − 1

∣∣− (r2 − 1)β− logp−1
∣∣r2 − 1

∣∣}
provided thatβ+1 is not a negative integer. The same formulae hold whenβ+1 is a negative
integer so long asp is positive. Also valid are

(r2− 1).(r2− 1)β± logp
∣∣r2 − 1

∣∣ = ±(r2 − 1)β+1
± logp

∣∣r2 − 1
∣∣

for anyβ and

(r2− 1)−m+ logp
∣∣r2 − 1

∣∣+ e−mπi(r2 − 1)−m− logp
∣∣r2− 1

∣∣ = (r2− 1)−m logp
∣∣r2 − 1

∣∣ .
Consideration of the Founer transforms of the generalised functions introduced in this

section is deferred to the next section.

6. Bessel functions

Bessel functions occur in many places in applied mathematics so that it is of interest to con-
sider their properties as generalised functions. In view of the great variety of Bessel funtions a
full discussion would be prohibitively long. So our investigation will be limited to one variant
but that should be sufficient to indicate how others can be handled.
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DEFINITION 6.1. The generalised functionrνJν(r) is defined by

rνJν(r) =
∞∑
m=0

(−1)mr2ν+2m

m!(ν+m)!2ν+2m
.

When<e(ν) > −n/2 the definition makes the generalised function the same as the conven-
tional functionrνJν(r). For other values ofν removal of a finite number of terms leaves a
conventional convergent series and so the whole series is generally convergent. ThusrνJν(r)

is a well-defined generalised function. The fact that the series is generally convergent means
that derivatives and Fourier transforms can be taken term-by-term when desired.

It follows from Definition 2.1 that, ifν 6= 1− n/2− k,
(∇2+ 1)rνJν(r) = (2ν+ n− 2)rν−1Jν−1(r). (37)

On the other hand, (2) gives

(∇2+ 1)r1−n/2J1−n/2(r) = 2n/2+1πn/2+1δ(x) sin 1
2nπ, (38)

whereas (13) supplies

(∇2+ 1)r−n/2−kJ−n/2−k(r) =
−2(k + 1)r−n/2−k−1J−n/2−k−1(r)

+ (−1)k+12n/2−k−1πn/2−1sin 1
2nπ

k+1∑
m=0

(n+ 4k − 4m+ 2)(∇2)k−m+1δ(x)

m!(k + 1−m)!(n/2+ k −m) .

(39)

Likewise, we obtain via (5)
n∑
j=1

xj∂j r
νJν(r) = r2.rν−1Jν−1(r) (40)

if ν 6= −n/2− k. Forν = −n/2− k we have, from (12) and (10),
n∑
j=1

xj ∂jr
−n/2−kJ−n/2−k(r) = r2.r−n/2−k−1J−n/2−k−1(r)

+ (−1)k2n/2−k+1πn/2−1 sin 1
2nπ

k∑
m=0

(∇2)k−mδ(x)

m!(k −m)! . (41)

By combining (37) and (40) we have, forν 6= −n/2− k,

r2(∇2+ 1)rνJν(r)+ (2− n− 2ν)

n∑
j=1

xj ∂j r
νJν(r) = 0, (42)

which is the same as the conventional result. Also (39), (41) and (10) provide

r2(∇2+ 1)r−n/2−kJ−n/2−k(r)+ 2(k + 1)
n∑
j=1

xj ∂jr
−n/2−kJ−n/2−k(r)

= (−1)k+12n/2−k+1πn/2−1 sin 1
2nπ

k∑
m=0

n+ 2k − 4m

m!(k −m)! (∇
2)k−mδ(x). (43)
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These relations reveal thatrνJν(r) is capable of constructing fundamental solutions of
certain differential equations whenn is odd.

Another formmula which can be useful is
n∑
j=1

xj∂j r
νJν(r)− 2νrνJν(r) = −rν+1Jν+1(r) (44)

whenν 6= −n/2− k.
In contrast torνJν the functionr−νJν is the same whether regarded as generalised or

conventional. It has the representation as a series

r−νJν(r) =
∞∑
m=0

(−1)mr2m

m!(ν+m)!2ν+2m
. (45)

The Bessel functionrνYν(r) can be defined now by

rνYν(r) = {rνJν(r) cosνπ− rνJ−ν(r)}/ sinνπ (46)

whenν is not an integer. It follows that

(∇2+ 1)rνYν(r) = (2ν+ n− 2)rν−1Yν−1(r), (47)
n∑
j=1

xj ∂j r
νYν(r) = r2.rν−1Yν−1(r), (48)

n∑
j=1

xj∂j r
νYν(r)− 2νrνYν(r) = −rν+1Yν+1(r). (49)

Whenν is an integer the limit of (46) is used as a definition. There is no problein whenν

is a positive integer and (47–49) continue to hold. Further consideration is necessary whenν

is a negative integer because it may coincide with one of the exceptional values. The relevant
definition is

r−kY−k(r) = (−1)k

π

∞∑
p=0

(−1)p

p!(p + k)!2k+2p

[
2r2p logr − {ψ(p)+ψ(p + k)+ 2 log 2}r2p]

− (−2)k

π

k∑
p=0

(k − p − 1)!
p!22p

r2p−2k. (50)

As a result

(∇2+ 1)r−n/2−kY−n/2−k(r) = −2(k + 1)r−n/2−k−1Y−n/2−k−1(r)

+ (−1)k2n/2−k−1πn/2−1 cos1
2nπ

k+1∑
m=0

(n+ 4k − 4m+ 2)(∇2)k−m+1δ(x)

m!(k + 1−m)!(n/2+ k −m) .
(51)

Furthermore
n∑
j=1

xj ∂jr
−n/2−kY−n/2−k(r) = r2.r−n/2−k−1Y−n/2−k−1(r)

− (−1)k2n/2−k+1πn/2−1 cos1
2nπ

k∑
m=0

(∇2)k−mδ(x)

m!(k −m)! .
(52)
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ThusrνYν can serve as a basis for a fundamental solution whenrνJν is not available.
The corresponding Hankel functions are defined in the customary way, namely

rνH(1)
ν (r) = rνJν(r)+ irνYν(r),

rνH(2)
ν (r) = rνJν(r)− irνYν(r).

They can replacerνYν(r) in (47–49).
One result concerning Fourier transforms is

THEOREM 6.1. Whenβ is not an integer the Fourier transform of(r2 − 1+ i0)β is

2n/2+βπn/2+1

(−β− 1)! e(β+n/2−1/2)πiα−β−n/2H(2)
−β−n/2(α).

For the transform of(r2− 1− i0)β change the sign ofi throughout.

Proof.Assume firstly that 0> <e(β) > −1. Then(r2−1+i0)β/2 is a conventional function
and so isK−β{µ(r2−1+ i0)1/2} whereKν is the usual modified Bessel function. Withµ > 0,
the function(r2 − 1+ i0)β/2K−β{µ(r2 − 1+ i0)1/2} is absolutely integrable and its Fourier
transform is

(2π)n/2

αn/2−1

∫ ∞
0
(r2 − 1+ i0)β/2K−β{µ(r2− 1+ i0)1/2}rn/2Jn/2−1(αr)dr

= 2n/2−1πn/2−1e(β+n/2−1/2)πiµβ(µ2+ α2)−(β+n/2)/2H(2)
−β−n/2

{
(µ2+ α2)1/2

}
by virtue of a formula given by Watson [4, p. 416]. The transform in the theorem follows now
provided that, for 0< <e(ν) < 1,

Lim
µ→0

(µx)νKν(µx) = (ν− 1)!2ν−1 (53)

because only conventional multiplication occurs.
To verify (53) start with

xνKν(x) = (ν− 1
2)!

2ν

π1/2

∫ ∞
0

cosxt

(t2+ 1)ν+1/2
dt (54)

which is valid for<e(ν) > −1/2 andx > 0. Also, if<e(ν) > 0,∫ ∞
0

dt

(t2 + 1)ν+1/2
= (ν− 1)!π1/2

(ν− 1/2)!2
after the change of variablet = {u/(1− u)}1/2. Hence

xνKν(x)− (ν− 1)!2ν−1 = (ν− 1

2
)! 2ν

π1/2

∫ ∞
0

cosxt − 1

(t2 + 1)ν+1/2
dt.

Since| cosxt − 1| < xt it follows that

xνKν(x)− (ν− 1)!2ν−1 = o(1) (55)

asx → 0 when<e(ν) > 1/2. It is evident from (54) thatxνKν(x) is bounded when<e(ν) > 0.
MoreoverK−ν(x) = Kν(x). Hence, when 0< <e(ν) ≤ 1/2,

2νxνKν(x) = xν+1 {Kν+1(x)−Kν−1(x)} = xν+1 {Kν+1(x)−K1−ν(x)}
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shows that (55) still holds on applying (55) to the term involvingKν+1 and invoking the
boundedness ofx1−νK1−ν. Thus, in fact, (55) is valid for<e(ν) > 0 and (53) follows in a
trivial fashion.

Accordingly, the theorem has been established for 0> <e(β) > −1. By (34) the Fourier
transform of(r2 − 1 + i0)β+1 is −∇̃2 − 1 of the Fourier transform of(r2 − 1 + i0)β. On
account of (47) this turns out to be the same formula withβ replaced byβ + 1. Thus the
transform is valid for<e(β) > −1, integers excepted. By virtue of (32) the Fourier transform
of (r2 − 1+ i0)β−1 is obtained from that of(r2 − 1+ i0)β by applying the operator

− 1

2β


n∑
j=1

αj ∂̃j + n+ 2β

 .
Then (49) recovers the original withβ replaced byβ − 1. Hence the theorem has been
demonstrated for(r2− 1+ i0)β so long asβ is not an integer.

For (r2 − 1− i0)β it is necessary only to change the sign of i in the exponential and put
H(1) for H(2). Thereafter the analysis follows the same route and the proof is concluded.�

Fourier transforms of the Hankel funcfions can be deduced by Fourier inversion and from
these the transforms of Bessel functions derived. They are given in

THEOREM 6.2. Whenν+ n/2 is not an integer the Fourier transform ofrνJν(r) is

(ν+ 1
2n− 1)!i2n+ν−1πn/2−1 {eνπi(α2− 1+ i0)−ν−n/2 − e−νπi(α2− 1− i0)−ν−n/2}

and ofrνYν(r) is

(ν+ 1
2n− 1)!(−1)2n+ν−1πn/2−1

{
eνπi(α2− 1+ i0)−ν−n/2 + e−νπi(α2− 1− i0)−ν−n/2} .

THEOREM 6.3. With m a positive integer the Fourier transform ofrm−n/2Jm−n/2(r) is

(−1)m2m+n/2πn/2−1
{
(m− 1)!(α2− 1)−m sin 1

2nπ+ (−1)m−1πδ(m−1)(α2− 1) cos1
2nπ

}
and ofrm−n/2Ym−n/2(r) is

(−1)m−12m+n/2πn/2−1 {(m− 1)!(α2− 1)−m cos1
2nπ+ (−1)m−1πδ(m−1)(α2− 1) sin 1

2nπ
}
.

Proof.Since

Lim
µ→0

rµ+m−n/2Jµ+m−n/2(r) = rm−n/2Jm−n/2(r)

the formulae can be derived at once from Theorem 6.2, (36) and (35). �
The remaining exceptional orders are dealt with by

THEOREM 6.4. The Fourier transform ofr−n/2−kJ−n/2−k(r) is

2n/2−k
πn/2−1

k! (α2− 1)k
[{

ψ(k)+ 2 log 2− log
∣∣(α2− 1)

∣∣} sin 1
2nπ+ πH(1− α2) cos1

2nπ
]

+2n/2−kπn/2−k sin 1
2nπ

k∑
m=0

(−1)mα2k−2m

m!(k −m)! ψ(k + n/2−m− 1)



Singularities of Fourier transforms461

and ofr−n/2−kY−n/2−k(r) is

−2n/2−1πn/2−1

k! (α2− 1)k
[{

ψ(k)+ 2 log 2− log
∣∣(α2− 1)

∣∣} cos1
2nπ− πH(1− α2) sin 1

2nπ
]

−2n/2−kπn/2−1 cos1
2nπ

k∑
m=0

(−1)mα2k−2m

m!(k −m)! ψ(k + n/2−m− 1).

Proof.Because

r−n/2−kJ−n/2−k(r) = Lim
µ→0

{
rµ−n/2−kJµ−n/2−k(r)

−
k∑

m=0

2n/2−k−µπn/2(∇2)k−mδ(x)(−1)m

m!(µ− n/2− k +m)!(n/2+ k −m− 1)!(k −m)!µ

}
(56)

the transform of the left-hand side can be obtained by taking the limit of the transform on the
right. The transform of the Bessel function on the rigid is available from Theorem 6.2 and the
limit leads to the stated result.

For the other Bessel function the formula analogous to (56) is

r−n/2−kY−n/2−k(r) = Lim
µ→0

{
rµ−n/2−kYµ−n/2−k(r)

+(−1)k2n/2−k−µπn/2−1 cos(µ− 1
2n)π

k∑
m=0

(n/2+ k −m− µ− 1)!(∇2)k−mδ(x)

(n/2+ k −m− 1)!m!(k −m)!µ

}
.

(57)

Again Theorem 6.2 supplies the transorm of the right-hand side and the theorem is proved.�
Several other transforms can be inferred from the foregoing. For convenience they are

listed in Appendix B without details of their derivation.

7. Continuity and asymptotic behaviour

In this section is studied the relation between the singular behaviour of a generalised function
and the properties of its Fourier transform. The subject was investigated for generalised func-
tions of a single variable by Lighhill [1] for the direct transform and by Lighthill [5] for the
inverse transform. Here his ideas are extended to generalised functions of several variables.

THEOREM 7.1. Letg(x) andgm(x) be locally (absolutely) integrable andgm(x) be such that
g(x)− gm(x) is absolutely integrable forr > R. Then, ifGm(α)→ 0 asα→∞,G(α)→ 0
asα→∞.

Proof. The hypotheses ensure thatg(x) − gm(x) is absolutely integrable. Therefore its trans-
formG(α) − Gm(α) → 0 asα → ∞ by the Riemann-Lebesgue lemma. SinceGm(α) → 0
asα→∞ the theorem follows. �

The theorem is useful becausegm(x) can be chosen to berβ or rβ logm r with <e(β) >

−n. They satisfy the conditions of the theorem on account of Theorem 4.1, Theorem 4.2,
Theorem 4.4 and Theorem 4.6. This is still true ifrβ is replaced by eia·xrβ, with a a real
constant vector, since the transform is merely translated by a finite amount. Evidently,g(x)
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is not obliged to be absolutely integrable inr > R for its Fourier transform to vanish at
infinity. However, behaviour liker−n andr−n logm r asr →∞ for g(x) is excluded from the
theorem because these generalised functions are not locally integrable and their transforms do
not vanish at infinity (see Theorem 4.3 and Theorem 4.5). Nevertheless, they can be included
by the next theorem.

THEOREM 7.2. Let the only singularities ofg0(x) be inr < R/2 and∂jg0(x) be absolutely
integrable inr > R for j = 1, . . . , n. Theng0(x)eia·xH(r − R) can be included ingm(x) in
Theorem 7.1.

Proof.Let η(x) be an infinitely differentiable function which is unity forr ≥ R and zero for
r ≤ R/2. Then the functiong0(x)η(x) − g0(x)H(r − R) vanishes forr > R andr ≤ R/2.
It is finite elsewhere and so is absolutely integrable. Hence its Fourier transform tends to zero
as aα → ∞. Therefore the desired result follows if the Fournier transform of eia·xg0(x)η(x)
tends to zero. Now

∂j
{
eia·xg0(x)η(x)

}− iaje
ia·xg0(x)η(x) =

{
η(x)∂jg0(x)+ g0(x)∂jη(x)

}
eia·x.

The given conditions ensure that the right-hand side is absolutely integrable so that its Fourier
transform tends to zero as aα → ∞. Hence the left-hand side enjoys the same property.
Accordingly, i(αj − aj ) times the Fourier transform of eia·xg0(x)η(x) tends to zero. Whatever
the direction of the radius vector toα at least one of|αj | tends to inifinity asα→∞. Therefore
the Fourier transform of eia·xg0(x)η(x) tends to zero asα→∞ and the proof is complete.�

There is an alternative version of Theorem 7.2 which is more symmetrical but is somewhat
more restrictive in its conditions. One advantage is that it allows for a different exponential
multiplier. It may be proved in the same way as Theorem 7.2 and is contained in

THEOREM 7.3. Let the only singularities ofg0(x) be inr < R/2 and (∇2 + a2){eiarg0(x)}
(a real) be absolutely integrable inr > R. Theneiarg0(x)H(r −R) can be included ingm(x)
in Theorem 7.1.

The generalised functionsrβ and rβ logm r with <e(β) ≥ −n are not the only possible
candidates forgm in Theorem 7.1. The generalised functionr−νJν(r) is locally integrable and,
by the preceding section, its Fourier transform is identically zero inα > 1 when<e(ν) >

−n/2 Therefore,r−νJν(r) is acceptable forgm when<e(ν) > −n/2. Two other candidates
when<e(ν) > −n/2 arerνJν(r) andrνYν(r). They are locally integrable and their Fourier
transforms tend to zero asα → ∞ on account of Theorem 6.2 and Theorem 6.3. However,
they are unacceptable when<e(ν) ≤ −n/2 because their Fourier transforms do not tend
to zero asα → ∞ and, in addition, they are not locally integrable. Nor does the device
of Theorem 7.2 help. Although it resolves the problem of local integrability, the oscillatory
behaviour ofJν andYν at infinity precludes satisfaction of the condition on∂jg0. ThusrνJν(r)

andrνYν(r) are available for Theorem 7.1 only when<e(ν) > −n/2.
Note that because of the asymptotic behaviour ofJν andYν the generalised functions which

behave like eiarrβ (a real) at infinity are acceptable candidates provided that they comply with
the other conditions imposed. Direct confirmation is forthcoming (for a fuller discussion see
Appendix A). In the integral at the beginning of the proof of Theorem 4.2 replaceµ by µ+ ia.
After the limit asµ → 0 is taken it is clear that the Fourier transform eiarrβ tends to zero
asα → ∞ when<e(β) > −n. That behaviour like eiarr−n at infinity can be permitted is a
consequence of Theorem 7.3.
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This direct confirmation means that it is possible to deduce something about the Fourier
transform ofr−νJν(r) without knowledge of the earlier theorems. The asymptotic develop-
ment ofJν gives

r−νJν(r) = 1

(2π)1/2rν+1/2

{
ei(r−νπ/2−π/4) + e−i(r−νπ/2−π/4)

}+O ( 1

rν+3/2

)
asr →∞, Consequentlyr−νJν(r) is absolutely integrable for<e(ν) > n−1/2 and its Fourier
transform tends to zero asα→∞. On the other hand the order term is absolutely integrable
for <e(ν) > n − 3/2 and the first term above is of the type just considered. It is evident then
that Theorem 7.1 makes the transform ofr−νJν(r) tend to zero for<e(ν) > n − 3/2. The
range ofν for which this is true can be extended by taking further terms in the asymptotic
expansion ofJν.

In order to deal with singularities at points other than the origin the following definition is
introduced.

DEFINITION 7.1. A generalised function is said to have a finite number of isolated sin-
gularities x1, x2, . . . , xM if it is equal to an infinitely differentiable function except at these
points.

Conventional functions with isolated singularities are not uncommon. The relation between
the behaviour of the Fourier transform and the singularities is a matter of some interest.
Of course it makes sense to treat them as generalised functions since their conventional
transforms may not exist.

DEFINITION 7.2. A generalised functiong(x) such thatg(x)−gm(x) is absolutely integrable
overr > R is said to be well-behaved at infinity ifGm(α)→ 0 asα→∞.

We can state now

THEOREM 7.4. Letg(x) possess a finite number of isolated singularities atx1, . . . , xM . For
m = 1, . . . ,M let hm(x) be infinitely differentiable except for a singularity atxm. Suppose
that ∂Nj {g(x)− hm(x)} is absolutely integrable over some sphere which enclosesxm for m =
1, . . . ,M. Then, if∂Nj g(x) and∂Nj hm(x) are well-behaved at infinity,

G(α) =
M∑
m=1

Hm(α)+ o
(|αj |−N)

asαj →∞.
Proof. Sinceg(x) has only a finite nunber of singularities,∂Nj g(x) is absolutely integrable
over any finite domain which excludes the singularities. Also∂Nj hm(x) is absolutely integrable
over any finite domain which excludesxm. On the other hand,∂Nj {g(x)−hm(x)} is absolutely
integrable over some domain containingxm. Hence∂Nj {g(x)− hm(x)} is absolutely integable
over any finite domain which excludesx1, . . . , xm−1, xm+1, . . . , xM . Therefore∂Nj {g(x) −∑M

m=1 hm(x)} is locally integrable. It is well-behaved at infinity by hypothesis. Consequently,
Theorem 7.1 ensures that its Fourier transform tends to zero asα→∞ i.e.

(iαj )
N

{
G(α)−

M∑
m=1

Hm(α)

}
= o(1).
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The theorem follows by choosing the direction ofα to be theαj -axis. �
In essence the theorem states that the singularities ofg(x) determine the asymptotic be-

haviour of its Fourier transform. Naturally, it may not be possible to have the sameN for all
j . The magnitude of the error may vary as the point of observation moves about theα-space.
Uniform behaviour can be obtained by requiring a little more ofg(x). An obvious modification
of the proof of Theorem 7.4 gives

THEOREM 7.5. If the conditions of Theorem 7.4 are satisfied except that∂Nj is replaced by
(∇2)N then

G(α) =
M∑
m=1

Hm(α)+ o
(
α−2N

)
.

The functionrνJν(r) with <e(ν) > −n/2 has as single singularity at the origin. Ifh1(x) =
r2ν/ν!2ν the conditions of Theorem 7.4 are met for anyj provided thatN is any positive
integer such thatN < 2ν + 2 + n. Therefore, by Theorem 4.2, the Fourier transform of
rνJν(r) is

(ν+ n/2− 1)!(−1)2ν+nπn/2−1α−n−2ν sinνπ+ o (α−N)
asα → ∞. This is consistent with Theorem 6.2. If extra terms in the expansion ofrνJν(r)

near the origin were included inh1(x) the value ofN could be increased and further terms in
the asymptotic development of Theorem 6.2 in powers ofα−2 obtained.

Of course, the singularity could be moved from the origin by considering|x− x1|νJν(|x−
x1|) say. The only effect is to multiplyH1(α) by e−iα·x1 without altering the error estimate.

As explained already, the singularities ofg(x) dictate the behaviour of the Fourier trans-
form. A Fourier inversion suggests that the behaviour ofg(x) at infinity is responsible for the
singularities of its transform. Whether or not this suggestion can be justified is the next topic
to be discussed.

THEOREM 7.6. If the generalised functiong(x) is absolutely integrable thenG(α) is locally
contimous in the sense that, givenδ > 0, there is anε > 0 such that|G(α + β)−G(α)| < δ

for |β| < ε.

Proof.

G(α)−G(α+ β) = 2i
∫ ∞
−∞

g(x)e−i(α+β/2)·x sin 1
2β · x dx.

Hence

|G(α)−G(α+ β)| ≤ 2
∫ ∞
−∞
|g(x)| ∣∣sin 1

2β · x
∣∣ dx

≤ |β|
∫
r≤R
|g(x)| |x| dx+ 2

∫
r>R

|g(x)|dx.

The second integral on the right can be made less thanδ/4 by choosingR large enough since
g is absolutely integrable. WithR fixed, the first term can be made less thanδ/2 by selecting
|β| small enough. The proof is concluded. �

The analogue of Theorem 7.1 is
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THEOREM 7.7. Letg(x) andgm(x) be absolutely integrable overr > R and letg(x)−gm(x)
be locally integrable. Then, ifGm(α) is locally continuous, so isG(α).

Proof. The given conditions makeg(x) − gm(x) absolutely integrable. From Theorem 7.6
G(α)−Gm(α) is locally continuous.
The theorem follows from the local continuity ofGm(α). �

Both rβ andrβ logm r are suitable choices forg(x) when<e(β) < −n. But r−n is not. It
is not absolutely integrable overr > R and its Fourier transform is not locally continuous as
can be seen from Theorem 4.3. Nevertheless it can be accommodated by means of

THEOREM 7.8. Let xjg0(x) be locally integrable forj = 1, . . . , n. Theng0(x)H(R − r)
can be included ingm(x) in Theorem 7.7.

Proof.Sincexjg0(x)H(R− r) is locally integrable and vanishes forr > R it is absolutely in-
tegrable. Therefore its transform is locally continuous. Consequently,∂̃j G̃0(α), whereG̃0(α)

is the transform ofg0(x)H(R − r), is locally continuous for everyj . The continuity of grad
G̃0 implies that ofG̃0 and the proof is concluded. �

To relate the singularities of transforms we introduce

DEFINITION 7.3. A generalised functiong(x) such thatg(x) − gm(x) is locally integrable
is said to be locally well-behaved ifGm(α) is locally continuous.

Then we have

THEOREM 7.9. Letg(x) andhm(x) be locally well-behaved. IfxNj {g(x)− hm(x)} (N a non-

negative integer) is absolutely integrable overr > R then ∂̃Nj {G(α) − Hm(α)} is locally
continuous.

Proof. The statement is an immediate consequence of the conditions imposed and Theo-
rem 7.7. �

In effect Theorem 7.9 demonstrates thatG(α) andHm(α) exhibit the same kind of singu-
lar behaviour. Another interpretation is that the behaviour ofg(x) at infinity determines the
singularities ofG(α). The theorem may be regarded as an inverse transform of Theorem 7.4.

An illustration of Theorem 7.9 is provided by takingg(x) = rνJν(r). This generalised
function is locally well-behaved because any terms which are not locally integrable may be
removed bygm(x); the local continuity ofGm(α) follows from Theorem 7.8, Theorem 4.2 and
Theorem 4.3.

For largerr

g(x) = rν−1/2

(2π)1/2

{
eir−(ν+1/2)πi/2+ e−ir−(ν+1/2)πi/2

}+O (rν−3/2
)
. (58)

The generalised functions in (58) are locally well-behaved by the same argument as was used
for rνJν(r). The order term is absolutely integrable overr > R so long asν < 3/2−n. Hence,
by Theorem 7.9 withN = 0, the transform ofrνJν(r) has the same singularities as those of
the transform of the generalised functions on the right-hand side of (58) whenν < 3/2− n.

The Fourier transforms of e±ir rβ are derived in Appendix A. By the remark at the end of
the appendix their dominant behaviour is available from (A.8) ifβ 6= −n/2− 1/2− k and
(A.10) if β = −n/2 − 1/2 − k. Hence (A.8) may be quoted whenν 6= −n/2− k and it
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is found that the singular behaviour coincides precisely with that furnished by Theorem 6.2
and Theorem 6.3. On the other hand, whenν = −n/2− k, (A.10) supplies singular terms in
agreement with those in Theorem 6.4.

Although the illustration has verified Theorem 7.9 only forν < 3/2 − n the result can
be extended to higher values ofν by including more terms in the asymptotic development of
Jν(r). Thereby the order term is reduced so thatν may be increased while retaining integra-
bility at infinity. According to Appendix A the extra terms have Fourier transforms which are
less singular than that provided by (58). Consequently, the dominant behaviour is unaffected
by the increase inν and the restriction on its size can be dropped.

In principle, more terms in the expansion in the neighbourhood of a singularity can be
obtained from the asymptotic development ofJν(r). It would be necessary to calculate further
terms in the transforms of e±ibrrβ beyond those in the appendix where only the leading terms
in the expansion have been set out.

Appendix A

In this appendix the generalised function e−cr rβ is considered. The constantc is allowed to
be complex subject to<e(c) ≥ 0 so that|ph(c)| ≤ π/2. Initially it will be assumed that
<e(c) > 0. Later the case when<e(c) = 0 will be discussed but, sincec = 0 has been
handled already in Section 2, the conditionc 6= 0 is imposed throughout. The generalised
function may be defined in an obvious way by

e−cr rβ =
∞∑
m=0

(−c)m
m! r

β+m. (A.1)

its properties can then be deduced from those ofrβ in Section 2. Thus, ifβ 6= 2− n− k,
(∇2− c2)e−cr rβ = β(β+ n− 2)e−cr rβ−2 − c(n+ 2β− 1)e−cr rβ−1 (A.2)

from Definition 2.1 and, ifβ 6= −n− k,
∂je
−cr rβ = βxje

−cr rβ−2 − cxje−cr rβ−1 (A.3)

from (5). On the other hand, (13) supplies

(∇2− c2)e−cr r2−n−2k = 2k(2k + n− 2)e−cr r−n−2k − c(3− n− 4k)e−cr r1−n−2k

−
k∑

m=0

c2m

(2m)!
(n+ 4k − 4m− 2)πn/2(∇2)k−mδ(x)
(n/2+ k −m− 1)!(k −m)!22k−2m−1

(A.4)

and

(∇2− c2)e−cr r1−n−2k = (2k + 1)(2k + n− 1)e−cr r−1−n−2k − c(1− n− 4k)e−cr r−n−2k

+
k∑

m=0

c2m+1

(2m+ 1)!
(n+ 4k − 4m− 2)πn/2(∇2)k−mδ(x)
(n/2+ k −m− 1)!(k −m)!22k−2m−1

. (A.5)

Also

∂je
−cr r−n−2k = (−n+ 2k)xje

−cr r−n−2k−2 − cxje−cr r−n−2k−1

+
k∑

p=0

c2p

(2p)!
xj (∇2)k−p+1δ(x)

(n/2+ k − p)!(k − p + 1)!22k−2p+1
(A.6)
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and

∂je
−cr r−n−2k−1 = −(n+ 2k + 1)xje

−cr r−n−2k−3− cxje−cr r−n−2k−2

−
k∑

p=0

c2p+1

(2p + 1)!
xj (∇2)k−p+1δ(x)

(n/2+ k − p)!(k − p + 1)!22k−2p+1
. (A.7)

For the Fourier transform we have

THEOREM A.1. If β 6= −n− k the Fourier transform ofe−cr rβ is

(β+ n− 1)!
(n/2− 1)! 2πn/2c−β−nF

(
1
2β+ 1

2n,
1
2β+ 1

2n+ 1
2,

1
2n,−

α2

c2

)
.

Proof. When<e(β) > −n the transform has been calculated already in the proof of The-
orem 4.2. It takes the form quoted after a standard transformation of the hypergeometric
function. The formula can be extended to lower values ofβ by taking advantage of (A.2).
This enables the transform of e−cr rβ−2 to be calculated from higher values ofβ. By drawing
benefit from the relation

c2(n+ 2β− 1)F
(

1
2β+ 1

2n,
1
2β+ 1

2n− 1
2,

1
2n,−α2

c2

)
− (c2+ α2)(β+ n− 1)F

(
1
2β+ 1

2n,
1
2β+ 1

2n+ 1
2,

1
2n,−α2

c2

)
= c2βF

(
1
2β+ 1

2n− 1, 1
2β+ 1

2n− 1
2,

1
2n,−α2

c2

)
it can be confirmed that the same formula is obtained withβ replaced byβ − 2. The proof is
concluded. �

The transform whenβ takes one of the values excluded by Theorem A.1 is slightly more
complicated because there are two cases to consider

THEOREM A.2. The Fourier transform ofe−cr r−n−2k is

πn/2c2k
k∑

m=0

{ψ(2k − 2m)− logc} zm
(2k − 2m)!m!(n/2+m− 1)!22m−1

+ 2πn/2c2k
∞∑

m=k+1

(2m− 2k − 1)!zm
m!(n/2+m− 1)!22m

and ofe−cr r−n−2k−1 is

−πn/2c2k+1
k∑

m=0

{ψ(2k + 1− 2m)− logc} zm
(2k + 1− 2m)!m!(n/2+m− 1)!22m−1

+ 2πn/2c2k+1
∞∑

m=k+1

(2m− 2k − 2)!zm
m!(n/2+m− 1)!22m

wherez = −α2/c2.

Proof.Since

e−cr r−n−2k = Lim
µ→0

e−cr rµ−n−2k −
k∑

p=0

c2p

(2p)!
πn/2(∇2)k−pδ(x)

(n/2+ k − p − 1)!(k − p)!22k−2p−1µ


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the Fourier transform of e−cr r−n−2k is

Lim
µ→0

{
(µ− 2k − 1)!
(n/2− 1)! 2πn/2c2k−µF

(
1
2µ− k, 1

2µ− k + 1
2,

1
2n, z

)
−

k∑
p=0

c2pπn/2(−α2)k−p

(2p)!(n/2+ k − p − 1)!(k − p)!22k−2p−1µ


by Theorem A.1. When|z| < 1 the hypergeometric function can be expanded in the usual
series. The firstk terms contain 1/µ and, if µ is made zero in the remaining factor, the last
series in{} is cancelled. Therefore the limit can be calculated as the derivative with respect to
µ in the firstk terms plus the sum of the remaining terms (withµ = 0) in the hypergeometric
series. The result is the formula quoted in the theorem. Although demonstrated for|z| < 1 it
turns out (as will be verified shortly) that the infinite series is a regular function ofz in thez-
plane cut along the positive real axis from 1 to infinity. Accordingly, the restriction to|z| < 1
can be dropped.

A parallel procedure gives the transform of e−cr r−n−2k−1 and the proof is finished. �
Neither the transform of Theorem A.1 nor that of Theorem A.2 possesses a singularity

unlessα2 approaches−c2. This can never occur when<e(c) > 0 as has been assumed hitherto.
Therefore, what happens when<e(c) = 0 will be considered now.

As c → ib (b positive) the point of observation may approach the branch line of the
transforms obtained already. In order to stay on the principal branch it is necessary thatz(=
−α2/c2) be such that 0< ph(z − 1) < 2π when<e(c) 6= 0. Hence, asc→ ib,

z − 1→ α2

b2
− 1+ i0

and 1− z→ e−iπ(α2/b2− 1+ i0) in any analytic continuation. Thus, we have

THEOREM A.3. Under the conditions of Theorems A.1 and A.2 the Fourier transform of
e−ibrrβ (b > 0) is obtained by replacingc by ib,z−1byα2/b2−1+i0 and1−z by e−iπ(α2/b2−
1+ i0). For the transform of eibrrβ change the sign ofi throughout the replacements..

Analytic continuation of the hypergeometric function whenβ 6= −n − k shows that the
singular part of the Fourier transform of e−ibrrβ is

(β+ 1
2n− 1

2)!2β+nπ(n−1)/2(ib)−β−ne(n/2+β+1/2)πi
(

α2

b2 − 1+ i0
)−n/2−β−1/2

×F (−1
2β,−1

2β− 1
2,

1
2 − β− 1

2n,e
−πi(α2/b2− 1+ i0)

)
so long asβ + n/2 + 1/2 is not an integer. Consequently, the dominant singularity of the
transform of e±ibrrβ is

(β+ 1
2n− 1

2)!2β+nπ(n−1)/2(∓ib)−β−ne∓(n/2+β+1/2)πi

(
α2

b2
− 1∓ i0

)−n/2−β−1/2

(A.8)

whenβ 6= −n− k andβ+ n/2+ 1/2 is not an integer. Whenβ+ n/2+ 1/2 is an integer the
analytic continuation of the hypergeometric function takes a different form. Ifβ+n/2+1/2 =
m wherem is a positive integer the dominant behaviour at the singularity of the transform of
e±ibrr−n/2−1/2+m is

(m− 1)!2n/2+m−1/2(−1)mπ(n−1)/2(∓ib)−m−n/2−1/2(α2/b2− 1∓ i0)−m. (A.9)
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It will be noticed that (A.9) is, in fact, the same as would be obtained from (A.8) by substitu-
tion of β = −n/2− 1/2+m. Of course that observation is limited to the dominant behaviour
near the singularity. Inclusion of the terms of lower order near the singularity would bring
logarithms into (A.9) but not (A.8).

Whenβ = −n/2− 1/2− k the restrictionk < n/2− 1/2 is imposed whenn is odd to
maintainβ within the scope of Theorem A.1. With that understanding the analytic continuation
of the hypergeometric function gives the dominant singular behaviour of the transform of
e±ibrr−n/2−1/2−k as

−2n/2−k−1/2π(n−1)/2

k! (∓ib)k−n/2+1/2

(
α2

b2
− 1

)k {
log

∣∣∣∣α2

b2
− 1

∣∣∣∣± πiH(α2− b2)

}
. (A.10)

Whenβ = −n − 2k the singularity (if any) of the transform is given by the infinite series
in Theorem A.2. Since the dominant behaviour is dictated by the terms at infinity it can be
identified withπ(n−1)/2(1

2c)
2k8(z, 1

2n+ 1
2 + 2k,1) where

8(z, s,1) =
∞∑
m=0

(m+ 1)−szm.

The function8(z, s,1) is regular in thez-plane cut along the positive real axis from 1 to∞
when<e(s) > 0, which verifies an earlier statement. Whens is not a positive integer the
dominant singularity whenz is near 1 is provided by

8(z, s,1) ' −(−s)!
z

(e−πi logz)s−1

and, whens is the positive integerm, by

8(z,m,1) ' −(logz)m−1

(m− 1)!z log(e−πi logz).

Hence, whenn is even the dominant singular behaviour of the Fourier transform of e±ibr

r−n−2k is

(−1

2
n− 1

2
− 2k)!π(n−1)/2(−1)ke±(n−1)πi/2(α2− b2∓ i0)n/2−1/2+2k/22kbn−1+2k. (A.11)

Whenn is odd the corresponding result is

− (α
2− b2)n/2−1/2+2k(−1)k

(1
2n− 1

2 + 2k)!22kbn−1+2k
π(n−1)/2

{
log

∣∣∣∣α2

b2
− 1

∣∣∣∣± πiH(α2− b2)

}
. (A.12)

Likewise the dominant singular behaviour of the Fourier transform of e±ibr r−n−2k−1 is

(−1
2n− 1

2 − 2k − 1)!π(n−1)/2(∓i)(−1)k+1e±(n−1)πi/2

×(α2− b2∓ i0)n/2+1/2+2k/22k+1bn+2k (A.13)

whenn is even and

− (α
2− b2)n/2+1/2+2k(−1)k

(1
2n+ 1

2 + 2k)!22k+1bn+2k
(∓i)π(n−1)/2

{
log

∣∣∣∣α2

b2
− 1

∣∣∣∣± πiH(α2− b2)

}
(A.14)
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whenn is odd.
Observe that (A.11) and (A.13) are the same as would be given by (A.8) withβ = −n−2k

andβ = −n−2k−1, respectively. Also (A.12) and (A.14) fit in with (A.10) if the restriction on
k whenn is odd is lifted. It may be concluded, therefore, that,as far as the dominant singular
behaviour of the transform ofe±ibrrβ is concerned the formula(A.8) may be employed unless
β = −n/2− 1/2− k when(A.10) should be used.

Appendix B

The following is a list of some Fourier transforms.

Table 1. Some Fourier transforms

g(x) G(α)

(r2− 1)β+ β!(−1)(2π)n/22β{α−β−n/2J−β−n/2(α) cos1
2nπ+ α−β−n/2Y−β−n/2(α) sin 1

2nπ}
β not an integer

(r2− 1)β− β!(2π)n/22βα−β−n/2Jβ+n/2(α)
β not an integer

(r2− 1)k+ k!(−1)k+1(2π)n/22k
{

α−k−n/2Jk+n/2(α)− 2n/2−kπn/2
k∑

m=0

(∇2)k−mδ(α)
m!(k−m)!

}
(r2− 1)k− k!(2π)n/22βkα−k−n/2Jk+n/2(α)
δ(k)(r2− 1) (−1)k(2π)n/2αk+1−n/2Jn/2−k−1(α)/2

k+1

(r2− 1)−m+ (2π)n/2

(m−1)!2m
[{

ψ(m− 1)− log 1
2α
}

αm−n/2Jn/2−m(α)

+ (−1)m
{
αm−n/2 ∂

∂µJm−µ−n/2(α) cos1
2nπ+ αm−n/2 ∂

∂µYm−µ−n/2(α) sin 1
2nπ

}
µ=0

]
(r2− 1)−m− (2π)n/2(−1)m−1

(m−1)!2m
[{

ψ(m− 1)− log 1
2α
}

αm−n/2Jn/2−m(α)+

+ αm−n/2
{
∂
∂µ
Jµ−m+n/2(α)

}
µ=0

]
(r2− 1+ i0)β 2n/2+βπn/2+1e(β+n/2−1/2)πiα−β−n/2H(2)−β−n/2(α)/(−β− 1)!
β not an integer

(r2− 1− i0)β 2n/2+βπn/2+1e−(β+n/2−1/2)πiα−β−n/2H(1)−β−n/2(α)/(−β− 1)!
β not an integer

References

1. M. J. Lighthill, An Introduction to Fourier Analysis and Generalised Functions.Cambridge: Cambridge
University Press, (1958) 79 pp.

2. D. S. Jones,Generalised Functions.London: McGraw-Hill (1966) 482 pp.
3. D. S. Jones,The Theory of Generalised Functions.Cambridge: Cambridge University Press (1982) 539 pp.
4. G. N. Watson,Theory of Bessel Functions, 2nd edition. Cambridge: Cambridge University Press (1944)

804 pp.
5. M. J. Lighthill, Inverse Fourier asymptotics. In: B. D. Sleeman and R. J. Jarvis (eds.),Ordinary and Partial

Differential Equations, Volume IV. Harlow: Longman Scientific & Technical (1993) pp. 222–237.


